25 resultados para FINITE TEMPERATURE FIELD THEORY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden vier unterschiedliche, stark korrelierte, fermionische Mehrbandsysteme untersucht. Es handelt sich dabei um ein Mehrstörstellen-Anderson-Modell, zwei Hubbard-Modelle sowie ein Mehrbandsystem, wie es sich aus einer ab initio-Beschreibung für ein korreliertes Halbmetall ergibt.rnrnDie Betrachtung des Mehrstörstellen-Anderson-Modells konzentriert sich auf die Untersuchung des Einflusses der Austauschwechselwirkung und der nicht-lokalen Korrelationen zwischen zwei Störstellen in einem einfach-kubischen Gitter. Das zentrale Resultat ist die Abstandsabhängigkeit der Korrelationen der Störstellenelektronen, welche stark von der Gitterdimension und der relativen Position der Störstellen abhängen. Bemerkenswert ist hier die lange Reichweite der Korrelationen in der Diagonalrichtung des Gitters. Außerdem ergibt sich, dass eine antiferromagnetische Austauschwechselwirkung ein Singulett zwischen den Störstellenelektronen gegenüber den Kondo-Singuletts der einzelnen Störstellen favorisiert und so den Kondo-Effekt der einzelnen Störstellen behindert.rnrnEin Zweiband-Hubbard-Modell, das Jz-Modell, wird im Hinblick auf seine Mott-Phasen in Abhängigkeit von Dotierung und Kristallfeldaufspaltung auf dem Bethe-Gitter untersucht. Die Entartung der Bänder ist durch eine unterschiedliche Bandbreite aufgehoben. Wichtigstes Ergebnis sind die Phasendiagramme in Bezug auf Wechselwirkung, Gesamtfüllung und Kristallfeldparameter. Im Vergleich zu Einbandmodellen kommen im Jz-Modell sogenannte orbital-selektive Mott-Phasen hinzu, die, abhängig von Wechselwirkung, Gesamtfüllung und Kristallfeldparameter, einerseits metallischen und andererseits isolierenden Charakter haben. Ein neuer Aspekt ergibt sich durch den Kristallfeldparameter, der die ionischen Einteilchenniveaus relativ zueinander verschiebt, und für bestimmte Werte eine orbital-selektive Mott-Phase des breiten Bands ermöglicht. Im Vergleich mit analytischen Näherungslösungen und Einbandmodellen lassen sich generische Vielteilchen- und Korrelationseffekte von typischen Mehrband- und Einteilcheneffekten differenzieren.rnrnDas zweite untersuchte Hubbard-Modell beschreibt eine magneto-optische Falle mit einer endlichen Anzahl Gitterplätze, in welcher fermionische Atome platziert sind. Es wird eine z-antiferromagnetische Phase unter Berücksichtigung nicht-lokaler Vielteilchenkorrelationen erhalten, und dabei werden bekannte Ergebnisse einer effektiven Einteilchenbeschreibung verbessert.rnrnDas korrelierte Halbmetall wird im Rahmen einer Mehrbandrechnung im Hinblick auf Korrelationseffekte untersucht. Ausgangspunkt ist eine ab initio-Beschreibung durch die Dichtefunktionaltheorie (DFT), welche dann durch die Hinzunahme lokaler Korrelationen ergänzt wird. Die Vielteilcheneffekte werden an Hand einer einfachen Wechselwirkungsnäherung verdeutlicht, und für ein Wechselwirkungsmodell in sphärischer Symmetrie präzisiert. Es ergibt sich nur eine schwache Quasiteilchenrenormierung. Besonders für röntgenspektroskopische Experimente wird eine gute Übereinstimmung erzielt.rnrnDie numerischen Ergebnisse für das Jz-Modell basieren auf Quanten-Monte-Carlo-Simulationen im Rahmen der dynamischen Molekularfeldtheorie (DMFT). Für alle anderen Systeme wird ein Mehrband-Algorithmus entwickelt und implementiert, welcher explizit nicht-diagonale Mehrbandprozesse berücksichtigt.rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Modellierung niederenergetischer elektromagnetischer und hadronischer Prozesse im Rahmen einer manifest lorentzinvarianten, chiralen effektiven Feldtheorie unter expliziter, dynamischer Berücksichtigung resonanter, das heißt vektormesonischer Freiheitsgrade. Diese effektive Theorie kann daher als Approximation der grundlegenden Quantenchromodynamik bei kleinen Energien verstanden werden. Besonderes Augenmerk wird dabei auf das verwendete Zähl- sowie Renormierungschema gelegt, wodurch eine konsistente Beschreibung mesonischer Prozesse bis zu Energien von etwa 1GeV ermöglicht wird. Das verwendete Zählschema beruht dabei im Wesentlichen auf einem Argument für großes N_c (Anzahl der Farbfreiheitsgrade) und lässt eine äquivalente Behandlung von Goldstonebosonen (Pionen) und Resonanzen (Rho- und Omegamesonen) zu. Als Renormierungsschema wird das für (bezüglich der starken Wechselwirkung) instabile Teilchen besonders geeignete complex-mass scheme als Erweiterung des extended on-mass-shell scheme verwendet, welches in Kombination mit dem BPHZ-Renormierungsverfahren (benannt nach Bogoliubov, Parasiuk, Hepp und Zimmermann) ein leistungsfähiges Konzept zur Berechnung von Quantenkorrekturen in dieser chiralen effektiven Feldtheorie darstellt. Sämtliche vorgenommenen Rechnungen schließen Terme der chiralen Ordnung vier sowie einfache Schleifen in Feynman-Diagrammen ein. Betrachtet werden unter anderem der Vektorformfaktor des Pions im zeitartigen Bereich, die reelle Compton-Streuung (beziehungsweise Photonenfusion) im neutralen und geladenen Kanal sowie die virtuelle Compton-Streuung, eingebettet in die Elektron-Positron-Annihilation. Zur Extraktion der Niederenergiekopplungskonstanten der Theorie wird letztendlich eine Reihe experimenteller Datensätze verschiedenartiger Observablen verwendet. Die hier entwickelten Methoden und Prozeduren - und insbesondere deren technische Implementierung - sind sehr allgemeiner Natur und können daher auch an weitere Problemstellungen aus diesem Gebiet der niederenergetischen Quantenchromodynamik angepasst werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of hadron production by photons opens unique ways to address a number of fundamental problems in strong interaction physics as well as fundamental questions in Quantum Field Theory. In particular, an understanding of two-photon processes is of crucial importance for constraining the hadronic uncertainties in precision measurements and in searches for new physics. The process of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.