36 resultados para Colloidal Photonic Crystals
Resumo:
A series of new columnar discotic liquid crystalline materials based on the superphenalene (C96) core has been synthesized by oxidative cyclodehydrogenation with iron(III) chloride of suitable three-dimensional oligophenylene precursors. These compounds were investigated by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray scattering (WAXS), and showed highly ordered supramolecular arrays and mesophase behavior over a broad temperature range. Good solubility, through the introduction of long alkyl chains, and the fact that these new superphenalene derivatives were found to be liquid crystalline at room temperature enabled the formation of highly ordered films (using the zone-casting technique), a requirement for application in organic electronic devices. The one-dimensional, intracolumnar charge carrier mobilities of superphenalene derivatives were determined using the pulse-radiolysis time-resolved microwave conductivity technique (PR-TRMC). Electrical properties of different C96-C12 architectures on mica surfaces were examined by using Electrostatic Force Microscopy (EFM) and Kelvin Probe Force Microscopy (KPFM). Hexa-peri-hexabenzocoronene (C42) derivatives substituted at the periphery with six branched alkyl ether chains were also synthesized. It was found that the introduction of ether groups within the side chains enhances the affinity of the discotic molecules towards polar surfaces, resulting in homeotropic self-assembly (as shown by POM and 2D-WAXS) when the compounds are processed from the isotropic state between two surfaces. A new, insoluble, superphenalene building block bearing six reactive sites was prepared, and was further used for the preparation of dendronized superphenalenes with bulky dendritic substituents around the core. UV/Vis and fluorescence experiments suggest reduced π-π stacking of the superphenalene cores as a result of steric hindrance between the peripheral dendritic units. A new family of graphitic molecules with partial ”zig-zag” periphery has been established. The incorporation of ”zig-zag” edges was shown to have a strong influence on the electronic properties of the new molecules (as studied by solution and solid-state UV/Vis, and fluorescence spectroscopy), leading to a significant bathochromic shift with respect to the parent PAHs (C42 and C96). The reactivity of the additional double bonds was examined. The attachment of long alkyl chains to a ”zig-zag” superphenalene core afforded a new, processable, liquid crystalline material.
Resumo:
Kolloidale Suspensionen, bei denen man die kolloidalen Teilchen als "Makroatome" in einem Kontinuum aus Lösungsmittelmolekülen auffaßt, stellen ein geeignetes Modellsystem zur Untersuchung von Verfestigungsvorgängen dar. Auf Grund der typischen beteiligten Längen- und Zeitskalen können Phasenübergänge bequem mit optischen Verfahren studiert werden. In der vorliegenden Arbeit wurde die Kinetik der Kristallisation in drei kolloidalen Systemen unterschiedlicher Teilchen-Teilchen-Wechselwirkung mit Lichtstreu- und mikroskopischen Methoden untersucht. Zur Untersuchung von Suspensionen aus sterisch stabilisierten PMMA-Teilchen, die in guter Näherung wie harte Kugeln wechselwirken, wurde ein neuartiges Laserlichtstreuexperiment aufgebaut, das die gleichzeitige Detektion von Bragg- und Kleinwinkelstreuung an einer Probe erlaubt. Damit konnte der zeitliche Verlauf der Kristallisation verfolgt sowie u.a. Nukleationsraten und erstmals auch Wachstumsgeschwindigkeiten bestimmt werden; diese wurden mit klassischer Nukleationstheorie sowie Wilson-Frenkel-Wachstum verglichen. In beiden Fällen konnte sehr gute Übereinstimmung mit der Theorie festgestellt werden. In Systemen geladener Partikel wurden mit Bragg-Mikroskopie die Wachstumsgeschwindigkeiten heterogener, an der Wand der Probenzelle aufwachsender Kristalle untersucht. Die Anpassung eines Wilson-Frenkel-Wachstumsgesetzes gelingt auch hier, wenn man die dazu eingeführte reskalierte Energiedichte auf den Schmelzpunkt bezieht. Geeignete Reskalierung der Daten erlaubt den Vergleich mit den Hartkugelsystemen. Zum ersten Mal wurde die Kristallisationskinetik in zwei verschiedenen kolloidalen binären Mischungen bestimmt und ausgewertet: In Beimischungen einer nichtkristallisierenden Teilchensorte zu einer kristallisierenden Suspension konnten die Daten mit einem modifizierten Wilson-Frenkel-Gesetz beschrieben werden, während in Mischungen aus zwei kristallisierenden Partikelsystemen eine unerwartet hohe Abnahme der Wachstumsgeschwindigkeiten beobachtet wurde. Kolloidale Suspensionen hartkugelähnlicher Mikrogel-Partikel konnten mit Hilfe des Lichtstreuaufbaues ebenfalls zum ersten Mal untersucht werden. Es wurde eine ähnliche Kristallisationskinetik wie in den PMMA-Systemen gefunden, jedoch auch einige wichtige Unterschiede, die insbesondere den Streumechanismus im Kleinwinkelbereich betrafen. Hier wurden verschiedene Interpretationsvorschläge diskutiert.
Resumo:
This dissertation is devoted to the experimental exploration of the propagation of elastic waves in soft mesoscopic structures with submicrometer dimensions. A strong motivation of this work is the large technological relevance and the fundamental importance of the subject. Elastic waves are accompanied by time-dependent fluctuations of local stress and strain fields in the medium. As such, the propagation phase velocities are intimately related to the elastic moduli. Knowledge of the elastic wave propagation directly provides information about the mechanical properties of the probed mesoscopic structures, which are not readily accessible experimentally. On the other hand, elastic waves, when propagating in an inhomogeneous medium with spatial inhomogeneities comparable to their wavelength, exhibit rather rich behavior, including the appearance of novel physical phenomena, such as phononic bandgap formation. So far, the experimental work has been restricted to macroscopic structures, which limit wave propagation below the KHz range. It was anticipated that an experimental approach capable of probing the interplay of the wave propagation with the controlled mesoscopic structures would contribute to deeper insights into the fundamental problem of elastic wave propagation in inhomogeneous systems. The mesoscopic nature of the structures to be studied precludes the use of traditional methods, such as sound transmission, for the study of elastic wave propagation. In this work, an optical method utilizing the inelastic scattering of photons by GHz frequency thermally excited elastic waves, known as Brillouin light scattering spectroscopy (BLS), was employed. Two important classes of soft structures were investigated: thin films and colloidal crystals. For the former, the main interest was the effect of the one-dimensional (1D) confinement on the wave propagation due to the presence of the free-surface or interface of the layer and the utilization of these waves to extract relevant material parameters. For the second system, the primary interest was the interaction of the elastic wave and the strong scattering medium with local resonance units in a three-dimensional (3D) periodic arrangement.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.
Resumo:
This PhD thesis is embedded into the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) and investigates the radiative transfer through Arctic boundary-layer mixed-phase (ABM) clouds. For this purpose airborne spectral solar radiation measurements and simulations of the solar and thermal infrared radiative transfer have been performed. This work reports on measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) conducted in the framework of ASTAR in April 2007 close to Svalbard. For ASTAR the SMART-Albedometer was extended to measure spectral radiance. The development and calibration of the radiance measurements are described in this work. In combination with in situ measurements of cloud particle properties provided by the Laboratoire de M¶et¶eorologie Physique (LaMP) and simultaneous airborne lidar measurements by the Alfred Wegener Institute for Polar and Marine Research (AWI) ABM clouds were sampled. The SMART-Albedometer measurements were used to retrieve the cloud thermodynamic phase by three different approaches. A comparison of these results with the in situ and lidar measurements is presented in two case studies. Beside the dominating mixed-phase clouds pure ice clouds were found in cloud gaps and at the edge of a large cloud field. Furthermore the vertical distribution of ice crystals within ABM clouds was investigated. It was found that ice crystals at cloud top are necessary to describe the observed SMART-Albedometer measurements. The impact of ice crystals on the radiative forcing of ABM clouds is in vestigated by extensive radiative transfer simulations. The solar and net radiative forcing was found to depend on the ice crystal size, shape and the mixing ratio of ice crystals and liquid water droplets.
Resumo:
Im Zentrum dieser Arbeit steht das Verhalten von geladenen kolloidalen Suspensionen in eingeschränkten Geometrien. Es wurden verschiedene keilförmige Zellen verwendet, die eine kontinuierliche Variation der Abstände zwischen den Platten ermöglichen. In Zellen mit fluid geordneten Suspensionen bei niedrigen Salzkonzentrationen akkumulieren die kolloidalen Partikel in der Keilspitze und bilden kristallin geordnete Strukturen. Systematische Experimente zu diesem Akkumulationseffekt führen zu dem Schluss, dass es um eine elektrostatischer Fallensituation handeln muss, was durch ein einfaches theoretisches, von Löwen et al vorgeschlagenes Modell bestätigt wird. In Abhängig von der Zellhöhe lässt sich in den auftretenden kristallinen Strukturen eine charakteristische Abfolge erkennen. Diese Struktursequenz wurde schon zuvor in eingeschränkten Keilgeometrien beobachtet, jedoch ermöglichen die in unseren Experimenten realisierbaren kleinen Keilwinkel die Beobachtung neuer Strukturen. Einige dieser neuen Strukturen zeigen eine exotische Anordnung die keine atomare Entsprechung besitzen. Basierend auf experimentellen Beobachtungen schlagen wir Modelle für unterschiedliche Übergangsmechanismen zwischen den verschiedenen Strukturen vor, unter der physikalisch motivierten Vorraussetzung, dass sich die Partikel wie einem hohen Druck unterworfene harte Kugeln verhalten. Des Weiteren wurde eine Zelle mit variabler Höhe konstruiert, die zur Untersuchung des vollständigen Phasenverhaltens geladener, zwischen parallelen Platten eingeschlossener Kugeln dient. Die vorläufigen Ergebnisse werden mit theoretischen Prognosen verglichen.
Resumo:
Die vorliegende Arbeit möchte die Anwendbarkeit ladungsstabilisierter kolloidaler Systeme als Modellsysteme für fundamentale Fragen der Festkörperphysik und Thermodynamik auf binäre Mischungen erweitern. In diesem Kontext untersucht sie das Phasenverhalten und mit ihm im Zusammenhang stehende Eigenschaften von binären Mischungen ladungsstabilisierter, sphärischer kolloidaler Partikel in wässriger Suspension. Da das Verhalten hartkugelähnlicher Systeme durch hohe Fremdionenkonzentrationen bereits gut bekannt ist, konzentriert sich diese Arbeit auf sehr langreichweitig repulsive Systeme unter deionisierten Bedingungen. Neben etablierten Methoden der Mikroskopie und statischer Lichtstreuung zur Phasendiagrammsbestimmung wird auch die Beobachtung der zeitabhängigen Entwicklung des Schermoduls verwendet, um eine langsame Erstarrungskinetik zu studieren. Es werden insbesondere Mischungen aus Komponenten unterschiedlicher Größe und Ladung der Größenverhältnisse 0,9, 0,82, 0,57, 0,39 und 0,37 untersucht. Diese zeigen in dieser Reihenfolge Phasendiagramme mit spindelförmigem fluid/kristallinen Koexistenzbereich wie auch azeotrope und eutektische Phasendiagramme. Die Strukturuntersuchungen aus der statischen Lichtstreuung stehen in praktisch allen Fällen im Einklang mit ungeordneten bcc- Substitutionskristallen, was über Modelle zu Schermodulmessungen bestätigt wird. Für das spindelförmige System wird ein überraschend weiter Koexistenzbereich beobachtet, wie er nicht von der Theorie erwartet wird. Die Lage, aber nicht die Form des Solidus stimmt quantitativ mit Simulationsvorhersagen zu einkomponentigen Systemen überein. Für das eutektische System bei einem Radienverhältnis von 0,57 wird der Einfluss der Schwerkraft auf das Phasenverhalten und die Erstarrungskinetik untersucht. Die der Kristallisation der kleineren Majoritätskomponente vorgelagerte gravitativ unterstützte Entmischung begünstigt hier die Verfestigung. Beobachtet werden Morphologien, die aus anderen Systemen bekannt sind (Facetten, Dendriten), wie auch erstmals eine kollumnare eutektische Morphologie. Aus den Ergebnissen wird der erste umfassende Überblick über das Phasenverhalten deionisierter Mischungen ladungsstabilisierter, sphärischer Partikel erstellt, die eine Diskussion der Daten anderer Autoren und unserer Gruppe über fluid-fluider Phasenseparation und einem System mit oberem azeotropen Punkt mit einschließt. Die meisten metallspezifischen Phasendiagrammtypen können mit ladungsstabilisierten kolloidalen Partikeln reproduziert werden. Die langreichweitig wechselwirkenden Partikel zeigt eine wesentlich verbesserte substitutionelle Mischbarkeit im Vergleich mit Hartkugel- und Metallsystemen. Das Größenverhältnis der sphärischen Partikel nimmt dabei die bestimmende Rolle für den Phasendiagrammtyp ein.
Resumo:
Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.
Resumo:
The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.
Resumo:
A unique characteristic of soft matter is its ability to self-assemble into larger structures. Characterizing these structures is crucial for their applications. In the first part of this work, I investigated DNA-organic hybrid material by means of Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS). DNA-organic hybrid materials, a novel class of hybrid materials composed of synthetic macromolecules and oligodeoxynucleotide segmenta, are mostly amphiphilic and can self-assemble into supramolecular structures in aqueous solution. A hybrid material of a fluorophore, perylenediimide (PDI), and a DNA segment (DNA-PDI) has been developed in Prof. A. Hermann’s group (University of Groningen). This novel material has the ability to form aggregates through pi-pi stacking between planar PDIs and can be traced in solution due to the fluorescence of PDI. I have determined the diffusion coefficient of DNA-PDI conjugates in aqueous solution by means of FCS. In addition, I investigated whether such DNA-PDIs form aggregates with certain structure, for instance dimers. rnOnce the DNA hybrid material self-assemble into supermolecular structures for instance into micelles, the single molecules do not necessarily stay in one specific micelle. Actually, a single molecule may enter and leave micelles constantly. The average residence time of a single molecule in a certain micelle depends on the nature of the molecule. I have chosen DNA-b-polypropylene oxide (PPO) as model molecules and investigated the residence time of DNA-b-PPO molecules in their according micelles by means of FCCS.rnBesides the DNA hybrid materials, polymeric colloids can also form ordered structures once they are brought to an air/water interface. Here, hexagonally densely packed monolayers can be generated. These monolayers can be deposited onto different surfaces as coating layers. In the second part of this work, I investigated the mechanical properties of such colloidal monolayers using micromechanical cantilevers. When a coating layer is deposited on a cantilever, it can modify the elasticity of the cantilever. This variation can be reflected either by a deflection or by a resonance frequency shift of the cantilever. In turn, detecting these changes provides information about the mechanical properties of the coating layer. rnIn the second part of this work, polymeric colloidal monolayers were coated on a cantilever and homogenous polymer films of a few hundred nanometers in thickness were generated from these colloidal monolayers by thermal annealing or organic vapor annealing. Both the film formation process and the mechanical properties of these resulting homogenous films were investigated by means of cantilever. rnElastic property changes of the coating film, for example upon absorption of organic vapors, induce a deflection of the cantilever. This effect enables a cantilever to detect target molecules, when the cantilever is coated with an active layer with specific affinity to target molecules. In the last part of this thesis, I investigated the applicability of suitably functionalized micromechanical cantilevers as sensors. In particular, glucose sensitive polymer brushes were grafted on a cantilever and the deflection of this cantilever was measured during exposure to glucose solution. rn
Resumo:
Polymer nanoparticles functionalized on the surface with photo-responsive labels were synthesized. In a first synthetic step, polystyrene was copolymerized with the cross-linker divinylbenzene and poly(ethylene glycol) acrylate in a miniemulsion, to produce nano-sized spheres (~ 60 nm radius) with terminal hydroxyl groups, which were functionalized in a subsequent synthetic step with photo-responsive labels. For this purpose, two photo-active molecular structures were separately used: anthracene, which is well known to form covalently bonded dimers upon photo-excitation; and pyrene, which only forms short lived excited state dimers (excimers). Acid derivatives of these labels (9-anthracene carboxylic acid and 1-pyrene butyric acid) were bonded to the hydroxyl terminal groups of the nanoparticles through an esterification reaction, via the intermediate formation of the corresponding acid chloride.rnThe obtained labeled nanoparticles appeared to be highly hydrophobic structures. They formed lyophobic suspensions in water, which after analysis by dynamic light scattering (DLS) and ultramicroscopic particle tracking, appeared to equilibrate as a collection of singly dispersed nanoparticles, together with a few nanoparticle aggregates. The relative amount of aggregates decreased with increasing amounts of the surfactant sodium dodecyl sulfate (SDS), thus confirming that aggregation is an equilibrated state resulting from lyophobicity. The formation of such aggregates was corroborated using scanning electron microscopy (SEM). The photo-irradiation of the lyophobic aqueous suspensions of anthracene labeled nanoparticles (An-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. The obtained state of aggregation could be reverted by sonication. The possibility to re-aggregate the system in subsequent photo-excitation and sonication cycles was established. Likewise, the photo-irradiation of lyophobic aqueous suspensions of pyrene-labeled nanoparticles (Py-NP) resulted in the formation of higher aggregates, as evidenced by DLS and ultramicroscopy. These appeared to remain aggregated due to hydrophobic interactions. This system could also be re-dispersed by sonication and re-aggregated in subsequent cycles of photo-excitation and sonication.
Resumo:
In der vorliegenden Arbeit wurden Miniemulsionen als räumliche Begrenzungen für die Synthese von unterschiedlichen funktionellen Materialien mit neuartigen Eigenschaften verwendet. Das erste Themengebiet umfasst die Herstellung von Polymer/Calciumphosphat-Hybridpartikeln und –Hybridkapseln über die templatgesteuerte Mineralisation von Calciumphosphat. Die funktionalisierte Oberfläche von Polymernanopartikeln, welche über die Miniemulsionspolymerisation hergestellt wurden, diente als Templat für die Kristallisation von Calciumphosphat auf den Partikeln. Der Einfluss der funktionellen Carboxylat- und Phosphonat-Oberflächengruppen auf die Komplexierung von Calcium-Ionen sowie die Mineralisation von Calciumphosphat auf der Oberfläche der Nanopartikel wurde mit mehreren Methoden (ionenselektive Elektroden, REM, TEM und XRD) detailliert analysiert. Es wurde herausgefunden, dass die Mineralisation bei verschiedenen pH-Werten zu vollkommen unterschiedlichen Kristallmorphologien (nadel- und plättchenförmige Kristalle) auf der Oberfläche der Partikel führt. Untersuchungen der Mineralisationskinetik zeigten, dass die Morphologie der Hydroxylapatit-Kristalle auf der Partikeloberfläche mit der Änderung der Kristallisationsgeschwindigkeit durch eine sorgfältige Wahl des pH-Wertes gezielt kontrolliert werden kann. Sowohl die Eigenschaften der als Templat verwendeten Polymernanopartikel (z. B. Größe, Form und Funktionalisierung), als auch die Oberflächentopografie der entstandenen Polymer/Calciumphosphat-Hybridpartikel wurden gezielt verändert, um die Eigenschaften der erhaltenen Kompositmaterialien zu steuern. rnEine ähnliche bio-inspirierte Methode wurde zur in situ-Herstellung von organisch/anorganischen Nanokapseln entwickelt. Hierbei wurde die flexible Grenzfläche von flüssigen Miniemulsionströpfchen zur Mineralisation von Calciumphosphat an der Grenzfläche eingesetzt, um Gelatine/Calciumphosphat-Hybridkapseln mit flüssigem Kern herzustellen. Der flüssige Kern der Nanokapseln ermöglicht dabei die Verkapselung unterschiedlicher hydrophiler Substanzen, was in dieser Arbeit durch die erfolgreiche Verkapselung sehr kleiner Hydroxylapatit-Kristalle sowie eines Fluoreszenzfarbstoffes (Rhodamin 6G) demonstriert wurde. Aufgrund der intrinsischen Eigenschaften der Gelatine/Calciumphosphat-Kapseln konnten abhängig vom pH-Wert der Umgebung unterschiedliche Mengen des verkapselten Fluoreszenzfarbstoffes aus den Kapseln freigesetzt werden. Eine mögliche Anwendung der Polymer/Calciumphosphat-Partikel und –Kapseln ist die Implantatbeschichtung, wobei diese als Bindeglied zwischen künstlichem Implantat und natürlichem Knochengewebe dienen. rnIm zweiten Themengebiet dieser Arbeit wurde die Grenzfläche von Nanometer-großen Miniemulsionströpfchen eingesetzt, um einzelne in der dispersen Phase gelöste Polymerketten zu separieren. Nach der Verdampfung des in den Tröpfchen vorhandenen Lösungsmittels wurden stabile Dispersionen sehr kleiner Polymer-Nanopartikel (<10 nm Durchmesser) erhalten, die aus nur wenigen oder einer einzigen Polymerkette bestehen. Die kolloidale Stabilität der Partikel nach der Synthese, gewährleistet durch die Anwesenheit von SDS in der wässrigen Phase der Dispersionen, ist vorteilhaft für die anschließende Charakterisierung der Polymer-Nanopartikel. Die Partikelgröße der Nanopartikel wurde mittels DLS und TEM bestimmt und mit Hilfe der Dichte und des Molekulargewichts der verwendeten Polymere die Anzahl an Polymerketten pro Partikel bestimmt. Wie es für Partikel, die aus nur einer Polymerkette bestehen, erwartet wird, stieg die mittels DLS bestimmte Partikelgröße mit steigendem Molekulargewicht des in der Synthese der Partikel eingesetzten Polymers deutlich an. Die Quantifizierung der Kettenzahl pro Partikel mit Hilfe von Fluoreszenzanisotropie-Messungen ergab, dass Polymer-Einzelkettenpartikel hoher Einheitlichkeit hergestellt wurden. Durch die Verwendung eines Hochdruckhomogenisators zur Herstellung der Einzelkettendispersionen war es möglich, größere Mengen der Einzelkettenpartikel herzustellen, deren Materialeigenschaften zurzeit näher untersucht werden.rn
Resumo:
Understanding liquid flow at the vicinity of solid surfaces is crucial to the developmentrnof technologies to reduce drag. One possibility to infer flow properties at the liquid-solid interface is to compare the experimental results to solutions of the Navier-Stokes equations assuming the no-slip boundary condition (BC) or the slip BC. There is no consensus in the literature about which BC should be used to model the flow of aqueous solutions over hydrophilic surfaces. Here, the colloidal probe technique is used to systematically address this issue, measuring forces acting during drainage of water over a surface. Results show that experimental variables, especially the cantilever spring constant, lead to the discrepancy observed in the literature. Two different parameters, calculated from experimental variables, could be used to separate the data obtained in this work and those reported in the literature in two groups: one explained with the no-slip BC, and another with the slip BC. The observed residual slippage is a function of instrumental variables, showing a trend incompatible with the available physical justifications. As a result, the no-slip is the more appropriate BC. The parameters can be used to avoid situations where the no-slip BC is not satisfied.