19 resultados para Algebraic ANRs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of $n$-dimensional Calabi-Yau manifolds whose solutions are integrals of $(n,0)$-forms over locally constant $n$-cycles. Assuming additional conditions on these families, we describe algebraic properties of these operators which leads to the purely algebraic notion of operators of CY-type. rnMoreover, we present an explicit way to construct CY-type operators which have a linearly rigid monodromy tuple. Therefore, we first usernthe translation of the existence algorithm by N. Katz for rigid local systems to the level of tuples of matrices which was established by M. Dettweiler and S. Reiter. An appropriate translation to the level of differential operators yields families which contain operators of CY-type. rnConsidering additional operations, we are also able to construct special CY-type operators of degree four which have a non-linearly rigid monodromy tuple. This provides both previously known and new examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit ist die Konstruktion eines Homomorphismus von partiell definierten, graduiert-kommutativen Algebren, der nach Ubergang zu rationalen Kohomologiegruppen mit der Regulatorabbildung reg zwischen motivischer und Deligne-Beilinson Kohomologie übereinstimmt.rnZu Beginn der Arbeit werden verschiedene Komplexe beschrieben, mit denen sich die motivische und die Deligne-Beilinson Kohomologie berechnen lassen.rnIm ersten Kapitel wird der Komplex der höheren Chow Ketten und der Unterkomplex der "alternierenden" Ketten "in guter Lage" eingeführt, die beide die motivische Kohomologie berechnen (letzterer mit rationalen Koeffizienten).rnIn den folgenden beiden Kapiteln werden Komplexe C_D und P_D beschrieben, mit denen sich die (rationale) Deligne-Beilinson Kohomologie berechnen lässt. Diese sind aufgebaut aus sogenannten Strömen, die im zweiten Kapitel eingeführt werden. Verknüpft sind die beiden Komplexe durch eine Auswertungsabbildung ev, die für rationale Koeffizienten zu einem Quasi-Isomorphismus wird. Auf beiden Komplexen lassen sich (Schnitt-)Produkte definieren, von denen jedoch nur das Produkt auf P_D gleichzeitig assoziativ und graduiert-kommutativ ist.rnIm vierten Kapitel wird ganz allgemein für eine Familie von Komplexen, die einer Reihe an Anforderungen genügt, ein (partiell definierter) Homomorphismus (der Regulator) von dem Komplex der höheren Chow Ketten in eben diese Komplexe konstruiert. Die beiden oben genannten Komplexe erfüllen diese Anforderungen und liefern daher Regulatoren reg_C und reg_P