20 resultados para VELVET ANTLER POLYPEPTIDE
Resumo:
Synthesis and characterization of monodisperse oligonucleotide-polypeptide di- and triblock copolymers are described. These block copolymers are promising building blocks for the formation of defined structures by sequential DNA self-assembly. The oligonucleotide sequences (ODN, 46 bases) obtained from standard solid phase synthesis were designed to form four-arm DNA junctions. The hybridization of the four single stranded oligonucleotides at room temperature to a stable four-arm junction is selective and quantitative. The junctions exhibit good thermal stability as proven by polyacrylamide gel electrophoresis (PAGE) and UV analysis. The second block consists of monodisperse elastin-like polypeptides (ELPs) with a pentapeptide repeat unit of (Val-Pro-Gly-Val-Gly) synthesized by genetic engineering. ODN-ELP diblock copolymers were obtained either by thiol coupling or by activated ester chemistry. Taking advantage of the endgroup control of both components (ODN, ELP), combination of the two different synthetic approaches leads to the synthesis of ODN-ELP-ODN triblock copolymers. Dynamic light scattering measurements of the single components and the synthesized diblock copolymers reveal their monodispersity. Hybridization of four ODN-ELP diblock copolymers carrying the four junction sequences shows quantitative self-assembly. In conclusion, this work provides the first example of the synthesis of perfectly defined ODN-ELP block copolymers and their potential use in DNA self-assembly.
Resumo:
Zusammenfassung: Die Applikation des Mykotoxins Aflatoxin B1 (AFB1) führt in der Ratte zu Lebertumoren hepatozellulären Ursprungs, während bisher keine transformierende Wirkung dieses Mykotoxins auf Kupffer- und Endothelzellen (Nichtparenchymzellen, NPC) nachgewiesen werden konnte. Diese Resistenzmechanismen der NPC gegenüber AFB1 wurden im ersten Teil dieser Arbeit untersucht. AFB1 ist per se inaktiv, wird jedoch durch Verstoffwechselung in den chemisch reaktiven, an DNA bindenden Metaboliten AFB1-8,9-Epoxid überführt. Daneben stellt die enzymatische Hydroxylierung von AFB1 am Kohlenstoff-9a zum Aflatoxin M1 eine Detoxifizierung dar. Durch HPLC-Analyse der AFB1-Metabolite konnte gezeigt werden, daß in Nichtparenchymzellen (NPC) das Verhältnis von 9a-Hydroxylierung zu 8,9-Epoxidierung höher als in Parenchymzellen (PC) ist. Die AFB1-9a-hydroxylase fördert insbesondere in den NPC der Leber die Bildung des weniger gentoxischen Metaboliten AFM1 und konkurriert daher um die Aktivierung von AFB1 zum mutagenen und kanzerogenen 8,9-Epoxid. Dieser metabolische Unterschied scheint also einen Beitrag zur Resistenz der NPC der Leber gegenüber der hepatokanzerogenen Wirkung von AFB1 zu leisten. Da ein Synergismus zwischen der AFB1-Exposition und einer Infektion mit dem Hepatitis B-Virus (HBV) beim Menschen bezüglich des Auftretens von hepatozellulären Karzinomen zu bestehen scheint, wurde im zweiten Teil dieser Arbeit untersucht, ob die metabolische Aktivierung von AFB1 durch eine HBV-Infektion verstärkt wird. In einem Vergleich der Biotransformation von AFB1 mit mikrosomalen Leberfraktionen von transgenen HBV-Mäusen und Kontrollmäusen wurde keine signifikanten Unterschiede festgestellt. Dagegen wurde bei Virus-infizierten Waldmurmeltieren eine deutlich reduzierte Bildung des AFB1-8,9-Epoxids beobachtet. Es konnte z.T. ein Zusammenhang zwischen den verschiedenen Stadien der Leberschädigung und den Metabolismusraten festgestellt werden, wobei die metabolische Aktivierung mit zunehmender Leberschädigung abzunehmen scheint. Auch hinsichtlich der Aktivitäten verschiedener Cytochrom P450 abhängiger Monooxygenasen wurde eine weitgehende Übereinstimmung mit den durch HPLC ermittelten Metabolitenprofilen des AFB1 beobachtet. Diese Studien mit subzellulären Leberfraktion der transgenen HBV-Mäusen und der Waldmurmeltieren zeigen, daß die Interaktion zwischen Hepatitis und AFB1 nicht mit der verstärkten metabolischer Aktivierung von AFB1 zu erklären ist. TGF-ß1, aus der Gruppe der Cytokine, wird als Mediator bei Entzündungsprozessen in der Leber so z.B. im Verlauf einer Virushepatitis freigesetzt. Aufgrund der besonderen Bedeutung des murinen CYP2A5 (ortholog zum humanen CYP2A6) bei der Aktivierung von AFB1 wurde der Einfluß von TGF-ß1 auf CYP2A5 in Primärkulturen von Maushepatozyten untersucht. Durch Messung der Aktivität der Cumarin-7-hydroxylase sowie durch Bestimmung der Proteinmenge von CYP2A5 mittels Western Blotting konnte zunächst die Induzierbarkeit des CYP2A5-Isoenzyms durch Phenobarbital in kultivierten Hepatozyten der Maus gezeigt werden. Nur bei einer niedrigen TGF-ß1-Konzentration wurde eine leicht erhöhte Expression von CYP2A5 festgestellt, ansonsten führte die Behandlung der kultivierten Maushepatozyten mit TGF-ß1 zu einer dosisabhängigen Verminderung der Expression von CYP2A5.
Resumo:
Liquid Crystal Polymer Brushes and their Application as Alignment Layers in Liquid Crystal Cells Polymer brushes with liquid crystalline (LC) side chains were synthesized on planar glass substrates and their nematic textures were investigated. The LC polymers consist of an acrylate or a methacrylate main chain and a phenyl benzoate group as the mesogenic unit which is connected to the main chain via a flexible alkyl spacer composed of six CH2 units. The preparation of the LC polymer brushes was carried out according to the grafting from technique: polymerization is carried out from azo-initiators that have been previously self-assembled on the substrate. LC polymer brushes with a thickness from a few nm to 230 nm were synthesized by varying the monomer concentration and the polymerization time. The LC polymer brushes were thick enough to allow for direct observation of the nematic textures with a polarizing microscope. The LC polymer brushes grown on untreated glass substrates exhibited irregular textures (polydomains). The domain size is in the range of some micrometers and depends only weakly on the brush thickness. The investigations on the texture-temperature relationship of the LC brushes revealed that the brushes exhibit a surface memory effect, that is, the identical texture reappears after the LC brush sample has experienced a thermal isotropization or a solvent treatment, at which the nematic LC state has been completely destroyed. The surface memory effect is attributed to a strong anchoring of the orientation of the mesogenic units to heterogeneities at the substrate surface. The exact nature of the surface heterogeneities is unknown. The effect was observed for the LC brushes swollen with low molecular weight nematic molecules, as well. Rubbing the glass substrate with a piece of velvet cloth prior to the surface modification with the initiator and the brush growth gives rise to the formation of homogenous alignment of the mesogenic units in the LC polymer side chains. Monodomain textures were obtained for these LC brushes. The mechanism for the homogeneous alignment is based on the transfer of Nylon fibers during the rubbing process. A surfactant was mixed with the azo-initiator in modifying rubbed substrates for subsequent brush generation. Such brushes exhibited biaxial optical properties. Hybrid LC cells made from a substrate modified with biaxial brushes and a rubbed glass substrate show an orientation with a tilt angle of a = 15.6 . This work shows that LC brushes grown on rubbed surfaces fulfill the important criteria for alignment layers: the formation of macroscopic monodomains. First results indicate that by diluting the brush with molecules which are also covalently bound to the surface but induce a different orientation, a system is obtained in which the two conflicting alignment mechanisms can be used to generate a tilted alignment. In order to allow for an application of the alignment layers into a potential product, subsequent work should focus on the questions how easy and in which range the tilt angle can be controlled.
Resumo:
Zusammenfassung Im Rahmen dieser Arbeit wurde der PAC1-Rezeptor (Pituitary Adenylate Cyclase Activating-Polypeptide-Rezeptor), ein Mitglied der VIP-Glucagon-Rezeptorfamilie, aus Sf21-Insektenzellen angereichert. Zur Überexpression wurde das Baculovirussystem genutzt. Die Expression konnte um das 20fache gegenüber natürlichem Gewebe gesteigert werden (40 pmol/mg). Das Drosophila-Expressionssystem und die Expression in suspensionsadaptierten HEK-Zellen erwiesen sich dagegen als weniger effizient für die Überexpression des PAC1-Rezeptors. Der PAC1-Rezeptor wurde mit Digitonin aus den Sf21-Zellmembranen solubilisiert und mittels eines Rhodopsin-Epitops über Antikörperaffinitätschromatographie funktionell angereichert. Der funktionell angereicherte Rezeptor wurde mit einem photoreaktiven und radioaktiven PACAP-Liganden markiert. Anschließend erfolgte der proteolytische Verdau mit Kallikrein. Aufgrund der Zuordnung der radioaktiven Spaltfragmente konnte die Ligandenbindungsstelle im PAC1-Rezeptor auf den N-Terminus und den ersten extrazellulären Loop beschränkt werden. Dieses Ergebnis bestätigt Resultate, die für andere Mitglieder dieser Rezeptorfamilie vorliegen.Alternativ wurde der PAC1-Rezeptor unfunktionell in E.colis überexprimiert und in hohen Maße über ein C-terminales His6-Tag aus Inclusion bodies angereichert. Zudem wurde in dieser Arbeit erstmals ein Einfluss des PAC1-Rezeptors auf die APP-Prozessierung festgestellt. Dies äußerte sich in einem Anstieg der APPsa-Sekretion. Obwohl weitere Untersuchungen über genauere Mechanismen und Wechselwirkungen noch ausstehen, konnte hier gezeigt werden, dass der PAC1-Rezeptor einen positiv regulatorischen Einfluss auf die APPsa-Sekretion besaß. Der PAC1-Rezeptor ist wahrscheinlich ein Stimulator der a-Sekretasen und erstmals in direkten Zusammenhang mit der Alzheimerschen Erkrankung diskutierbar.
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.
Resumo:
Tetraspan vesicle membrane proteins (TVPs) sind konservierte, ubiquitär vorkommende Membranproteine synaptischer Vesikel und zytoplasmatischer Transportvesikel. Bei Säugetieren lassen sie sich in die Physine, Gyrine und SCAMPs (secretory carrier-associated membrane proteins) unterteilen, die im Nematoden C. elegans jeweils nur durch ein einzelnes Polypeptid vertreten sind (Synaptophysin-1 [SPH-1], Synaptogyrin-1 [SNG-1] und SCAMP-1 [SCM-1]). Obwohl den TVPs eine Beteiligung bei der Regulation des Vesikelzyklus zugesprochen wurde, sind Synaptophysin-1-Knockout-Mäuse und vollständig TVP-defiziente Würmer gesund und weisen nur geringgradige Veränderungen auf. In dieser Arbeit sollten daher zum einen genomweite komparative Transkriptomanalysen durchgeführt werden, um mögliche Kompensationsmechanismen in der Maus und C. elegans zu finden, zum anderen sollten mit Hilfe pharmakologischer Stressassays und genetischer Verfahren Schwachstellen und Redundanzen identifiziert werden. Erstaunlicherweise konnten durch Affymetrix GeneChip-Analysen der RNA in der Retina von Synaptophysin-1-/--Mäusen keine differenziell exprimierten Gene gefunden werden. Bei der Untersuchung der C. elegans-TVP-Dreifachmutante wurden hingegen 17 Gene mit erhöhter und 3 mit erniedrigter Transkription identifiziert. Die Befunde für 12 hochregulierte Gene wurden durch quantitative Real-Time RT-PCR bestätigt. Das am stärksten hochregulierte Gen arf-1.1 kodiert für eine GTPase, die vermutlich an der Regulation der Vesikelbildung beteiligt ist. Von den ebenso identifizierten Genen cdr-2, cdr-4 und pgp-9 ist bekannt, dass sie in Stresssituationen, z. B. in Gegenwart von Cadmium, verstärkt transkribiert werden. ugt-62 und ugt-19 kodieren für Glucuronosyltransferasen. Für arf-1.1, cdr-2, ugt-62 sowie für das Gen T16G1.6, das für eine coiled-coil-Domäne kodiert, wurden im Folgenden fluoreszierende Promoterkonstrukte hergestellt, um Koexpressionsmuster mit TVPs zu bestimmen. Es stellte sich heraus, dass alle vier Promoterkonstrukte im Darm zusammen mit SPH-1 und SCM-1 im Darm transkribiert werden. Mit fluoreszierenden Translationschimären konnte weiterhin gezeigt werden, dass ARF-1.1 und CDR-2 mit den Darm-spezifischen TVPs im apikalen Bereich der Darmzellen kolokalisieren. Um mehr über die Funktion von TVPs im Vesikelzyklus zu erfahren, wurden pharmakologische und genetische Analysen von Würmern durchgeführt, in denen die Expression des Neuronen-spezifischen SNG-1 verändert ist. Deletion oder Überexpression führte zu einer Resistenz gegenüber dem Acetylcholinesterase-Inhibitor Aldicarb und zu erhöhter Empfindlichkeit gegenüber dem GABA-Rezeptor-Antagonisten Pentylentetrazol. Auf genetischer Ebene zeigte sich, dass sng-1 synthetisch mit den Genen für Synaptotagmin-1, Endophilin A sowie Synaptojanin wirkt. Die beobachteten Effekte weisen auf alternative Funktionen in der synaptischen Übertragung hin und unterstützen zugleich die Hypothese, dass SNG-1 im synaptischen Vesikelzyklus eine wichtige Funktion erfüllt, die möglicherweise einem noch unbekannten redundanten Kompartiment-spezifischen Signalweg der synaptischen Transmission zuzuordnen ist.
Resumo:
Pearls are an amazing example of calcium carbonate biomineralization. They show a classic brick and mortar internal structure in which the predominant inorganic part is composed by aragonite and vaterite tablets. The organic matrix is disposed in concentric layers tightly associated to the mineral structures. Freshwater cultivate pearls (FWCPs) and shells nacreous layers of the Chinese mussel Hyriopsis cumingii were demineralized using an ion exchange resin in order to isolate the organic matrix. From both starting materials a soluble fraction was obtained and further analyzed. The major component of the soluble extracts was represented by a similar glycoprotein having a molecular weight of about 48 kDa in pearls and 44 kDa in shells. Immunolocalization showed their wide distribution in the organic sheet surrounding calcium carbonate tablets of the nacre and in the interlamellar and intertabular matrix. These acidic glycoprotein also contained inside the aragonite platelets, are direct regulators during biomineralization processes, participating to calcium carbonate precipitation since the nucleation step. Selective calcium carbonate polymorph precipitation was performed using the two extracts. The polysaccharides moiety was demonstrate to be a crucial factor in polymorphs selection. In particular, the higher content in sugar groups found in pearls extract was responsible of stabilization of the high energetic vaterite during the in vitro precipitation assay; while irregular calcite was obtained using shells protein. Furthermore these polypeptides showed a carbonic anhydrase activity that, even if not directly involved in polymorphs determination, is an essential regulator in CaCO3 formation by means of carbonate anions production. The structural and functional characterization of the proteins included in biocomposites, gives important hints for understanding the complicated process of biomineralization. A better knowledge of this natural mechanism can offer new strategies for producing environmental friendly materials with controlled structures and enhanced chemical-physical features.
Resumo:
Die Hämocyanine der Cephalopoden Nautilus pompilius und Sepia officinalis sorgen für den Sauerstofftransport zwischen den Kiemen und den Geweben. Sie bestehen aus einem zylindrischen Dekamer mit interner Kragenstruktur. Während eine Untereinheit (also eine Polypeptidkette) bei NpH aus sieben paralogen funktionellen Domänen (FU-a bis FU-g) besteht, führte ein Genduplikationsereignis der FU-d zu acht FUs in SoH (a, b, c, d, d´, e, f, g). In allen Mollusken Hämocyaninen bilden sechs dieser FUs den äußeren Ring und die restlichen die interne Kragenstruktur. rnrnIn dieser Arbeit wurde ein dreidimensionales Modell des Hämocyanins von Sepia officinalis (SoH) erstellt. Die Rekonstruktion, mit einer Auflösung von 8,8Å (FSC=0,5), erlaubt das Einpassen von Homolologiemodellen und somit das Erstellen eines molekularen Modells mit pseudo atomarer Auflösung. Des Weiteren wurden zwei Rekonstruktionen des Hämocyanins von Nautilus pompilius (NpH) in verschiedenen Oxygenierungszuständen erstellt. Die auf 10 und 8,1Å aufgelösten Modelle zeigen zwei verschiedene Konformationen des Proteins. Daraus ließ sich eine Modellvorstellung über die allosterische Funktionsweise ableiten. Die hier erreichte Auflösung von 8Å ist die momentan höchste eines Molluskenhämocyanins. rnAuf Grundlage des molekularen Modells von SoH konnte die Topologie des Proteins aufgeklärt werden. Es wurde gezeigt, dass die zusätzliche FU-d´ in den Kragen integriert ist und somit die prinzipielle Wandarchitektur aller Mollusken Hämocyanine identisch ist. Wie die Analyse des erstellten molekularen Modells zeigt werden sind die beiden Isoformen (SoH1 und SoH2) in den Bereichen der Interfaces nahezu identisch; auch der Vergleich mit NpH zeigt grosse Übereinstimmungen. Des weiteren konnte eine Fülle von Informationen bezüglich der allosterischen Signalübertragung innerhalb des Moleküls gewonnen werden. rnDer Versuch, NpH in verschiedenen Oxygenierungszuständen zu zeigen, war erfolgreich. Die Datensätze, die unter zwei atmosphärischen Bedingungen präpariert wurden, führten reproduzierbar zu zwei unterschiedlichen Rekonstruktionen. Dies zeigt, daß der hier entwickelte experimentelle Ansatz funktioniert. Er kann nun routinemäßig auf andere Proteine angewandt werden. Wie der strukturelle Vergleich zeigte, verändert sich die Orientierung der FUs durch die Oxygenierung leicht. Dies wiederum beeinflusst die Anordnung innerhalb der Interfaces sowie die Abstände zwischen den beteiligten Aminosäuren. Aus dieser Analyse konnte eine Modellvorstellung zum allosterischen Signaltransfer innerhalb des Moleküls abgeleitet werden, die auf einer Umordnung von Salzbrücken basiert.
Resumo:
Diese Arbeit präsentiert die bislang höchst aufgelösten KryoEM-Strukturen für ein Cephalopoden hämocyanin Dekamer (Nautilus pompilus Hämocyanin, NpH) und ein Gastropoden Hämocyanin Didekamer (keyhole limpet hemocyanin isoform 1). Durch die Methoden des “molecular modelling” und “rigid-body-fiting” wurde auch eine detaillierte Beschreibung beider Strukturen auf atomarem Niveau erstmalig möglich. Hämocyanine sind kupferhaltige Sauerstoff-Transportproteine die frei gelöst in Blut zahlreicher Arthropoden und Mollusken vorkommen. Allgemein sind Molluskenhämocyanine als Dekamere (Hohlzylinder aus 5 Untereinheiten-dimere) oder Didecamere (Zusammenlagerung von zwei Dekameren) zu finden. Durch Anlagerung weiterer Dekamere bilden sich teilweise tubuläre Multidekamere. Hämocyanine der Cephalopoden bestehen ausschließlich aus solitären Decameren. In Octopus und Nautilus bestehen die 10 Untereinheiten aus 7 funktionellen Einheiten(FU-a bis FU-g), wobei jede FU ein Sauerstoffmolekül binden kann. FUs a-f bilden die Wand des ringförmigen Moleküls und 10 Kopien der FU-g bilden einen sogenannten „inneren Kragenkomplex“. Das im Rahmen dieser Arbeit erstelltes molekulares Modell von NpH klärt die Struktur des Dekamers vollständig auf. Wir waren zum ersten Mal in der Lage das Untereinheiten-dimer, den Verlauf der Polypeptidkette und 15 unterschiedliche Kontaktstellen zwischen FUs zu identifizieren. Viele der inter-FU-Kontakte weisen Aminosäurenkonstellationen auf, die die Basis für die Übertragung allosterischer Wechselwirkungen zwischen FUs darstellen könnten und Hinweise für den Aufbau der allosterische Einheit geben. Potentielle Bindungsstellen für N-glykosidische Zucker und bivalente Kationen wurden auch identifiziert. Im Gegensatz zu NpH, kommen Gastropoden Hämocyanine (inkl. KLH) hauptsächlich als Didekamere vor und der Kragenkomplex wird in diesem Fall aus 2 FUs gebildet (Fu-g und FU-h). Die zusätzliche C'-terminale FU-h zeichnet sich durch eine spezielle Verlängerung von ~ 100 Aminosäuren aus. KLH stammt aus der kalifornische Schnecke Megathura crenulata und kommt seit mehreren Jahrzehnten als Immunostimulator in der immunologischen Grundlagenforschung und klinischen Anwendung zum Einsatz. KLH weist zwei Isoformen auf, KLH1 und KLH2. Das vorliegende Modell von KLH1 erlaubt die komplexe Architektur dieses riesigen Proteins in allen Details zu verstehen, sowie einen Vergleich zum dem NpH Dekamer auf atomare Ebene. Es wurde gefunden, dass das Untereinheitensegment a-b-c-d-e-f-g, sowie die equivalenten Kontaktstellen zwichen FUs stark konserviert sind. Dies deutet darauf hin, dass in Bezug auf die Übertragung allosterische Signale zwischen benachbarten FUs, grundlegende Mechanismen in beiden Molekülen beibehalten wurden. Weiterhin, konnten die Verbindungen zwischen den zwei Dekameren ertsmalig identifiziert werden. Schließlich, wurde die Topologie der N-glycosidischen Zucker, welche für die immunologische Eigenschaften von KLH1 von großer Bedeutung sind, auch aufgeklärt. Somit leistet die vorliegende Arbeit einen wesentlichen Schritt zum Verständnis der Quartärstruktur und Funktion der Molluskenhämocyanine.rn
Resumo:
In der vorliegenden Arbeit konnte gezeigt werden, dass durch die grafting-from-Methode verschiedene geschützte Polypeptidbürsten basierend auf L-glutaminsäure, L-asparaginsäure, L-lysin und L-ornithin synthetisch zugänglich sind. Zur Verwirklichung dieser Synthesestrategie wurde mehrstufig ein Makroinitiator auf Basis von N-methacrylamid-1,6-diaminohexan hergestellt, der die ringöffnende Polymerisation von Leuchs´schen Anhydriden zur Entwicklung von geschützten Polypeptidseitenketten initiieren kann. Durch stark saure bzw. alkalische Abspaltbedingungen war es möglich, die Schutzgruppen bei allen geschützten Bürsten bis auf eine Spezies erfolgreich zu entfernen. Weitergehende Untersuchungen an den positiv bzw. negativ geladenen Polyelektrolytbürsten mittels statischer Lichtstreuung und Kapillarelektrophorese zeigten, dass lediglich die Z-geschützten Poly-L-lysinbürsten ohne Kettenabbau entschützt werden konnten. In allen anderen Fällen wurden nach Abspaltung der Schutzgruppen lineare Kettenfragmente detektiert. Durch die Zugabe von NaClO4 oder Methanol zu den wässrigen Lösungen der Poly-L-lysinbürsten konnte mittels CD-Spektroskopie gezeigt werden, dass die Seitenketten von einer ungeordneten Konformation in eine helikale Konformation übergehen. In weiterführenden Experimenten wurde mittels statischer Lichtstreuung, dynamischer Lichtstreuung, SAXS, und AFM-Aufnahmen in Lösung bewiesen, dass die helikale Konformation der Seitenketten eine deutliche Abnahme des Zylinderquerschnitts und des Querschnittträgheitsradius zur Folge hat, die Topologie der Bürste allerdings unverändert bleibt. Weiterhin konnte mittels Kapillarelektrophorese die elektrophoretische Mobilität der Poly-L-lysinbürsten und ihrer linearen Analoga bestimmt werden. Mit diesen Resultaten war es in Kombination mit statischen Lichtstreuexperimenten möglich, die effektive Ladung von linearem und verzweigten Poly-L-lysin nach einer Theorie von Muthukumar zu berechnen. Das Ergebnis dieser Rechnungen bestätigt die Ergebnisse früherer Untersuchungen von Peter Dziezok, der in seiner Dissertation durch Leitfähigkeits und Lichtstreumessungen an linearem PVP und PVP-Bürsten herausfand, dass die effektive Ladung von Polymerbürsten mindestens um einen Faktor 10 kleiner ist als bei den korrespondierenden linearen Analoga.
Resumo:
Bei dem 2010 von unserer Arbeitsgruppe entdeckten Mega-Hämocyanin handelt es sich um einen stark abgewandelten Typ des respiratorischen Proteins Hämocyanin, bestehend aus zwei flankierenden regulären Dekameren und einem zentralen Mega-Dekamer. Diese sind aus zwei immunologisch verschiedenen Untereinheiten mit ~400 bzw. ~550 kDa aufgebaut, die in unserer Arbeitsgruppe bereits proteinbiochemisch charakterisiert wurden. Im Zuge dieser Untersuchungen konnte zudem eine 3D-Rekonstruktion des Oligomers (13,5 MDa) mit einer Auflösung von 13Å erstellt werden. Das Ziel der vorliegenden Arbeit war die Aufklärung der Primärstruktur beider Polypeptide bei der Schnecke Melanoides tuberculata (MtH). Es gelang, die cDNAs der beiden Untereinheiten vollständig zu sequenzieren. Die zu typischen Dekameren assemblierende MtH400-Untereinheit umfasst 3445 Aminosäuren und besitzt eine theoretische Molekularmasse von 390 kDa. Nach dem Signalpeptid von 23 Aminosäuren Länge folgen die für Gastropoden-Hämocyanine typischen funktionellen Einheiten FU-a bis FU-h. Insgesamt verfügt die MtH400-Untereinheit über sechs potentielle N-Glykosylierungsstellen. Die MtH550-Untereinheit, welche mit 10 Kopien das Mega-Dekamer bildet, umfasst 4999 Aminosäuren und besitzt eine theoretische Molekularmasse von 567 kDa. Damit handelt es sich bei dieser Untereinheit um die zweitgrößte jemals bei einem Protein detektierte Polypeptidkette. Die MtH550-Untereinheit besteht aus einem Signalpeptid von 20 Aminosäuren Länge und den typischen Wand-FUs (FU-a bis FU-f). Daran anschließend folgen sechs weitere Varianten der FU-f (FU-f1 bis FU-f6). Die MtH550-Untereinheit verfügt über insgesamt zwölf potentielle N-Glykosylierungsstellen. Anhand der ermittelten Primärstrukturdaten wird klar, dass der auffällig vergrößerte Kragenbereich des Mega-Dekamers aus je 10 Kopien der FU-f1 bis FU-f6 besteht. Die ermittelten Sequenzdaten der beiden MtH-Untereinheiten weisen im Vergleich zu anderen Hämocyanin Sequenzen einige sehr charakteristische Indels sowie unübliche N-Glykosylierungsstellen auf. Es war zudem möglich, anhand einer molekularen Uhr den Entstehungszeitpunkt des Mega-Hämocyanins zu datieren (145 ± 35 MYA). Sowohl die Topologie als auch die berechneten Trennungszeitpunkte des an allen Verzweigungen gut unterstützten Stammbaums stimmen mit den bisher publizierten und auf Hämocyanindaten basierenden molekularen Uhren überein.
Resumo:
Die technische Silikatproduktion erfordert in der Regel hohe Temperaturen und extreme pH-Werte. In der Natur hingegen haben insbesondere Kieselschwämme die außergewöhnliche Fähigkeit, ihr Silikatskelett, das aus einzelnen sogenannten Spiculae besteht, enzymatisch mittels des Proteins Silicatein zu synthetisieren. rnIm Inneren der Spiculae, im zentralen Kanal, befindet sich das Axialfilament, welches hauptsächlich aus Silicatein-α aufgebaut ist. Mittels Antikörperfärbungen und Elektronenmikroskopischen Analysen konnte festgestellt werden, dass Silicatein in mit Kieselsäure-gefüllten Zellorganellen (silicasomes) nachzuweisen ist. Mittels dieser Vakuolen kann das Enzym und die Kieselsäure aus der Zelle zu den Spiculae im extrazellulären Raum befördert werden, wo diese ihre endgültige Länge und Dicke erreichen. Zum ersten Mal konnte nachgewiesen werden, dass rekombinant hergestelltes Silicatein-α sowohl als Siliciumdioxid-Polymerase als auch Siliciumdioxid-Esterase wirkt. Mittels Massenspektroskopie konnte die enzymatische Polymerisation von Kieselsäure nachverfolgt werden. Durch Spaltung der Esterbindung des künstlichen Substrates Bis(p-aminophenoxy)-dimethylsilan war es möglich kinetische Parameter der Siliciumdioxid-Esterase-Aktivität des rekombinanten Silicateins zu ermitteln.rnZu den größten biogenen Silikatstukuren auf der Erde gehören die Kieselnadeln der Schwammklasse Hexactinellida. Nadelextrakte aus den Schwammklassen Demospongien (S. domuncula) und Hexactinellida (M. chuni) wurden miteinander verglichen um die potentielle Existenz von Silicatein oder Silicatein-ähnliche Molekülen und die dazu gehörige proteolytischen Aktivität nachzuweisen. Biochemische Analysen zeigten, dass das 27 kDA große isolierte Polypeptid in Monoraphis mehrere gemeinsame Merkmale mit den Silicateinen der Demospongien teilt. Dazu gehören die Größe und die Proteinase-Aktivität. rnUm die Frage zu klären, ob das axiale Filament selbst zur Formbildung der Skelettelemente beiträgt, wurde ein neues mildes Extraktionsverfahren eingeführt. Dieses Verfahren ermöglichte die Solubilisierung des nativen Silicateins aus den Spiculae. Die isolierten Silicateine lagen als Monomere (24 kDa) vor, die Dimere durch nicht-kovalente Bindungen ausbildeten. Darüber hinaus konnten durch PAGE-Gelelektrophorese Tetramere (95 kDa) und Hexamere (135 kDa) nachgewiesen werden. Die Monomere zeigten eine beträchtliche proteolytische Aktivität, die sich während der Polymerisationsphase des Proteins weiter erhöhte. Mit Hilfe der Lichtmikroskopie und Elektronenmikroskopie (TEM) konnte die Assemblierung der Proteine zu filamentartigen Strukturen gezeigt werden. Die Selbstorganisation der Silicatein-α-Monomeren scheint eine Basis für Form- und Musterbildung der wachsenden Nadeln zu bilden.rn Um die Rolle des kürzlich entdeckten Proteins Silintaphin-1, ein starker Interaktionspartner des Silicatein-α, während der Biosilifizierung zu klären, wurden Assemblierungs-Experimente mit den rekombinanten Proteinen in vitro durchgeführt. Zusätzlich wurde deren Effekt auf die Biosilikatsynthese untersucht. Elektronenmikroskopische Analysen ergaben, dass rekombinantes Silicatein-α zufällig verteilte Aggregate bildet, während die Koinkubation beider Proteine (molekulares Verhältnis 4:1) über fraktal artige Strukturen zu Filamenten führt. Auch die enzymatische Aktivität der Silicatein-α-vermittelte Biosilikatsynthese erhöhte sich in Gegenwart von Silintaphin-1 um das 5,3-fache. rn
Resumo:
Die tropische Süsswasserschnecke Biomphalaria glabrata gehört zu der Familie der Planorbidae, welche als einziges Taxon der Gastropoden Hämoglobin als Sauerstofftransportprotein verwenden. Als Zwischenwirt des Bilharzioseerregers Schistosoma mansoni ist B. glabrata von tropenmedizinischer Interesse. Das extrazelluläre BgHb zeigt sich mit einem Anteil von 95% als Hauptprotein in der Hämolymphe. Dieses setzt sich aus Polypeptidketten mit je 240kDa zusammen. Diese wiederrum lassen sich in 13-Häm-Domänen und eine deutlich kleinere N-terminalen nicht Häm-Domäne untergliedern. Die Sequenzierung von zwei der drei Untereinheiten des BgHb (BgHb1, BgHb2) ermöglichte die rekombinante Expression ganzer Untereinheiten in Insektenzellen, und die Expression einiger BgHb2-Konstrukte in E. coli Zellen. Im Rahmen meiner Arbeit gelang es, BgHb1 in biologisch aktiver Form in Insektenzellen zu exprimieren. Das aus dem Überstand der Insektenzellen aufgereinigte rekombinante BgHb1 zeigte eine immunologische Identität mit nativen BgHb. Strukturelle Analysen belegten zudem die Assemblierung des rekombinanten BgHb1 zu einer dem nativen Protein gleichenden Quartärstruktur. Demnach konnte in meiner Arbeit der Nachweis erbracht werden, dass eine einzelne Isoform in der Lage ist, zur Quartärstruktur zu assemblieren. Zusätzlich ergaben Sauerstoffbindungsanalysen, dass das rekombinante BgHb1 reversibel Sauerstoff binden kann.rnIn den restlichen 5% der B. glabrata Hämolymphe zeigt sich ein rudimentäres Hämocyanin, welches für den Sauerstofftransport keine Rolle zu spielen scheint, und ein rosettenförmiges Protein, das es aufzuklären galt. Durch massenspektrometrische Analysen erhaltene Peptidfragmente zeigten eine hohe Sequenzähnlichkeit zu den löslichen Acetylcholin -Bindeproteinen anderer Mollusken. Diese AChBP zeigen eine hohe Sequenzähnlichkeit zur Ligandenbindedomäne von Rezeptoren der Cys-Loop-Proteinfamilie.rnDatenbankrecherchen deckten die Existenz zweier Isoformen auf
Resumo:
This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.
Resumo:
Die Forschung im Bereich der Drug Delivery-Systeme konzentriert sich auf biokompatible und wenig immunogene Trägermoleküle. Eine Klasse vielversprechender Trägersysteme stellen Peptid basierte Polymere dar, die neben einer hohen Biokompatibilität auch eine Sensitivität gegenüber externen Einflüssen aufweisen. Der zwitterionische Charakter von Aminosäuren und Peptiden verhindert die Adsorption von Serumproteinen und ein „antifouling“ Verhalten kann festgestellt werden, sodass diese Moleküle für den Einsatz als Wirkstoffträgersystem sehr geeignet scheinen. In Kombination mit einer bürstenartigen Struktur entstehen Systeme mit einer einzigartigen Peptidarchitektur, die sich durch eine hohe Dichte funktioneller Gruppen für Konjugationsreaktionen auszeichnen und deren formabhängige Zellaufnahme sie besonders attraktiv für die Anwendung als „Nanocarrier“ macht.rnrnDas zwitterionische Poly-(ε-N-Methacryloyl-L-Lysin) (Mw = 721,000 g∙mol 1) wurde durch freie radikalische Polymerisation dargestellt und seine Konformation in Abhängigkeit von Ionenstärke und pH-Wert untersucht. Die Biokompatibilität des Systems konnte durch Toxizitätstests und dynamische Lichtstreuung in humanem Blutserum nachgewiesen werden. Zusammen mit der vernachlässigbaren unspezifischen Aufnahme in dendritische Zellen aus Knochenmark erfüllt das System damit alle Bedingungen, die an ein polymeres Wirkstoffträgersystem gestellt werden. Darüber hinaus können Komplexe des Polymers mit DNA in Gegenwart von divalenten Metallionen für die Gentransfektion verwendet werden.rnrnDurch Kopplung von ε-N-Methacryloyl-L-Lysin mit der Elastin-ähnlichen Polypeptid Pentasequenz Valin-Prolin-Glycin-Glycin-Glycin konnte ein Hexapeptid-Makromonomer dargestellt werden, welches anschließend mittels „grafting through“ Polymerisation zur Polymerbürste umgesetzt wurde. Die wurmartige Struktur der Polymerbürsten wurde in AFM-Aufnahmen gezeigt und eine hohe Kettensteifigkeit der Polymerbürsten über dynamische und statische Lichtstreuung nachgewiesen. Zirkulardichroismus-Messungen lieferten Informationen über struktur-, salz- und temperaturabhängige Veränderungen der Konformation. Toxizitätstests und dynamische Lichtstreuung in humanem Blutserum bestätigten die erwartete Biokompatibilität.rnrnBasierend auf zwei Elastin-ähnlichen Polypeptiden mit ähnlicher Peptidsequenz wurden insgesamt vier unterschiedliche Makromonomere mit jeweils 20 Pentapeptid-Wiederholungseinheiten dargestellt. Über anschließende „grafting through“ Polymerisation entstanden molekulare Bürstenmoleküle mit variierenden externen funktionellen Gruppen, die für zukünftige Konjugationsreaktionen verwendet werden können. Der Einfluss von Ionenstärke und Temperatur auf die Konformation der Makromonomere und Polymere wurde mittels Zirkulardichroismus- und Trübungskurven-Messungen untersucht und ein starker Einfluss der hohen Seitenkettendichte auf das Verhalten der Polymerbürsten wurde festgestellt. Über dynamische Lichtstreuung konnte ein von den externen funktionellen Gruppen abhängiges Aggregationsverhalten in humanem Blutserum nachgewiesen werden.rnrnDie in dieser Arbeit synthetisierten Polymerbürsten mit peptidischen Seitenketten stellen damit biokompatible und vielversprechende Trägersysteme für die Konjugation mit Biomolekülen dar, die zukünftig als Drug Delivery-Systeme ihren Einsatz finden können.rn