22 resultados para Field Admitting (one-dimensional) Local Class Field Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thema dieser Arbeit ist die Entwicklung und Kombination verschiedener numerischer Methoden, sowie deren Anwendung auf Probleme stark korrelierter Elektronensysteme. Solche Materialien zeigen viele interessante physikalische Eigenschaften, wie z.B. Supraleitung und magnetische Ordnung und spielen eine bedeutende Rolle in technischen Anwendungen. Es werden zwei verschiedene Modelle behandelt: das Hubbard-Modell und das Kondo-Gitter-Modell (KLM). In den letzten Jahrzehnten konnten bereits viele Erkenntnisse durch die numerische Lösung dieser Modelle gewonnen werden. Dennoch bleibt der physikalische Ursprung vieler Effekte verborgen. Grund dafür ist die Beschränkung aktueller Methoden auf bestimmte Parameterbereiche. Eine der stärksten Einschränkungen ist das Fehlen effizienter Algorithmen für tiefe Temperaturen.rnrnBasierend auf dem Blankenbecler-Scalapino-Sugar Quanten-Monte-Carlo (BSS-QMC) Algorithmus präsentieren wir eine numerisch exakte Methode, die das Hubbard-Modell und das KLM effizient bei sehr tiefen Temperaturen löst. Diese Methode wird auf den Mott-Übergang im zweidimensionalen Hubbard-Modell angewendet. Im Gegensatz zu früheren Studien können wir einen Mott-Übergang bei endlichen Temperaturen und endlichen Wechselwirkungen klar ausschließen.rnrnAuf der Basis dieses exakten BSS-QMC Algorithmus, haben wir einen Störstellenlöser für die dynamische Molekularfeld Theorie (DMFT) sowie ihre Cluster Erweiterungen (CDMFT) entwickelt. Die DMFT ist die vorherrschende Theorie stark korrelierter Systeme, bei denen übliche Bandstrukturrechnungen versagen. Eine Hauptlimitation ist dabei die Verfügbarkeit effizienter Störstellenlöser für das intrinsische Quantenproblem. Der in dieser Arbeit entwickelte Algorithmus hat das gleiche überlegene Skalierungsverhalten mit der inversen Temperatur wie BSS-QMC. Wir untersuchen den Mott-Übergang im Rahmen der DMFT und analysieren den Einfluss von systematischen Fehlern auf diesen Übergang.rnrnEin weiteres prominentes Thema ist die Vernachlässigung von nicht-lokalen Wechselwirkungen in der DMFT. Hierzu kombinieren wir direkte BSS-QMC Gitterrechnungen mit CDMFT für das halb gefüllte zweidimensionale anisotrope Hubbard Modell, das dotierte Hubbard Modell und das KLM. Die Ergebnisse für die verschiedenen Modelle unterscheiden sich stark: während nicht-lokale Korrelationen eine wichtige Rolle im zweidimensionalen (anisotropen) Modell spielen, ist in der paramagnetischen Phase die Impulsabhängigkeit der Selbstenergie für stark dotierte Systeme und für das KLM deutlich schwächer. Eine bemerkenswerte Erkenntnis ist, dass die Selbstenergie sich durch die nicht-wechselwirkende Dispersion parametrisieren lässt. Die spezielle Struktur der Selbstenergie im Impulsraum kann sehr nützlich für die Klassifizierung von elektronischen Korrelationseffekten sein und öffnet den Weg für die Entwicklung neuer Schemata über die Grenzen der DMFT hinaus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit beschäftigt sich mit Strukturbildung im schlechten Lösungsmittel bei ein- und zweikomponentigen Polymerbürsten, bei denen Polymerketten durch Pfropfung am Substrat verankert sind. Solche Systeme zeigen laterale Strukturbildungen, aus denen sich interessante Anwendungen ergeben. Die Bewegung der Polymere erfolgt durch Monte Carlo-Simulationen im Kontinuum, die auf CBMC-Algorithmen sowie lokalen Monomerverschiebungen basieren. Eine neu entwickelte Variante des CBMC-Algorithmus erlaubt die Bewegung innerer Kettenteile, da der bisherige Algorithmus die Monomere in Nähe des Pfropfmonomers nicht gut relaxiert. Zur Untersuchung des Phasenverhaltens werden mehrere Analysemethoden entwickelt und angepasst: Dazu gehören die Minkowski-Maße zur Strukturuntersuchung binären Bürsten und die Pfropfkorrelationen zur Untersuchung des Einflusses von Pfropfmustern. Bei einkomponentigen Bürsten tritt die Strukturbildung nur beim schwach gepfropften System auf, dichte Pfropfungen führen zu geschlossenen Bürsten ohne laterale Struktur. Für den graduellen Übergang zwischen geschlossener und aufgerissener Bürste wird ein Temperaturbereich bestimmt, in dem der Übergang stattfindet. Der Einfluss des Pfropfmusters (Störung der Ausbildung einer langreichweitigen Ordnung) auf die Bürstenkonfiguration wird mit den Pfropfkorrelationen ausgewertet. Bei unregelmäßiger Pfropfung sind die gebildeten Strukturen größer als bei regelmäßiger Pfropfung und auch stabiler gegen höhere Temperaturen. Bei binären Systemen bilden sich Strukturen auch bei dichter Pfropfung aus. Zu den Parametern Temperatur, Pfropfdichte und Pfropfmuster kommt die Zusammensetzung der beiden Komponenten hinzu. So sind weitere Strukturen möglich, bei gleicher Häufigkeit der beiden Komponenten bilden sich streifenförmige, lamellare Muster, bei ungleicher Häufigkeit formt die Minoritätskomponente Cluster, die in der Majoritätskomponente eingebettet sind. Selbst bei gleichmäßig gepfropften Systemen bildet sich keine langreichweitige Ordnung aus. Auch bei binären Bürsten hat das Pfropfmuster großen Einfluss auf die Strukturbildung. Unregelmäßige Pfropfmuster führen schon bei höheren Temperaturen zur Trennung der Komponenten, die gebildeten Strukturen sind aber ungleichmäßiger und etwas größer als bei gleichmäßig gepfropften Systemen. Im Gegensatz zur self consistent field-Theorie berücksichtigen die Simulationen Fluktuationen in der Pfropfung und zeigen daher bessere Übereinstimmungen mit dem Experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit beginnt mit dem Vergleich spezieller Regularisierungsmethoden in der Quantenfeldtheorie mit dem Verfahren zur störungstheoretischen Konstruktion der S-Matrix nach Epstein und Glaser. Da das Epstein-Glaser-Verfahren selbst als Regularisierungsverfahren verwandt werden kann und darüberhinaus ausschließlich auf physikalisch motivierten Postulaten basiert, liefert dieser Vergleich ein Kriterium für die Zulässigkeit anderer Regularisierungsmethoden. Zusätzlich zur Herausstellung dieser Zulässigkeit resultiert aus dieser Gegenüberstellung als weiteres wesentliches Resultat ein neues, in der Anwendung praktikables sowie konsistentes Regularisierungsverfahren, das modifizierte BPHZ-Verfahren. Dieses wird anhand von Ein-Schleifen-Diagrammen aus der QED (Elektronselbstenergie, Vakuumpolarisation und Vertexkorrektur) demonstriert. Im Gegensatz zur vielverwandten Dimensionalen Regularisierung ist dieses Verfahren uneingeschränkt auch für chirale Theorien anwendbar. Als Beispiel hierfür dient die Berechnung der im Rahmen einer axialen Erweiterung der QED-Lagrangedichte auftretenden U(1)-Anomalie. Auf der Stufe von Mehr-Schleifen-Diagrammen zeigt der Vergleich der Epstein-Glaser-Konstruktion mit dem bekannten BPHZ-Verfahren an mehreren Beispielen aus der Phi^4-Theorie, darunter das sog. Sunrise-Diagramm, daß zu deren Berechnung die nach der Waldformel des BPHZ-Verfahrens zur Regularisierung beitragenden Unterdiagramme auf eine kleinere Klasse eingeschränkt werden können. Dieses Resultat ist gleichfalls für die Praxis der Regularisierung bedeutsam, da es bereits auf der Stufe der zu berücksichtigenden Unterdiagramme zu einer Vereinfachung führt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic devices based on organic semiconductors have gained increased attention in nanotechnology, especially applicable to the field of field-effect transistors and photovoltaic. A promising class of materials in this reseach field are polycyclic aromatic hydrocarbons (PAHs). Alkyl substitution of these graphenes results in the selforganization into one-dimensional columnar superstructures and provides solubility and processibility. The nano-phase separation between the π-stacking aromatic cores and the disordered peripheral alkyl chains leads to the formation of thermotropic mesophases. Hexa-peri-hexabenzocoronenes (HBC), as an example for a PAH, exhibits some of the highest values for the charge carrier mobility for mesogens, which makes them promising candidates for electronic devices. Prerequisites for efficient charge carrier transport between electrodes are a high purity of the material to reduce possible trapping sites for charge carriers and a pronounced and defect-free, long-range order. Appropriate processing techniques are required to induce a high degree of aligned structures in the discotic material over macroscopic dimensions. Highly-ordered supramolecular structures of different discotics, in particular, of HBC derivatives have been obtained by solution processing using the zone-casting technique, zone-melting or simple extrusion. Simplicity and fabrication of highly oriented columnar structures over long-range are the most essential advantages of these zone-processing methods. A close relation between the molecular design, self-aggregation and the processing conditions has been revealed. The long-range order achieved by the zone-casting proved to be suitable for field effect transistors (FET).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model.rnrnThe usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis.rnrnAnalogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe domain wall formation, antiferromagnetically induced density shifts, and we show the relevant role of spin-imbalance for antiferromagnetic states.rnrnSince the first step for understanding the physics of the examined models was the application of a mean field approximation, we analyze the effect of including the second order terms of the weak coupling perturbation expansion for the repulsive model. We show that our results survive the influence of quantum fluctuations and show that the renormalization factors for order parameters and critical temperatures lead to a weaker influence of the fluctuations on the results in finite sized systems than on the results in the thermodynamical limit. Furthermore, in the context of second order theory we address the question whether results obtained in the dynamical mean field theory (DMFT), which is meanwhile a frequently used method for describing trapped systems, survive the effect of the non-local Feynman diagrams neglected in DMFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors. In these materials the weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities.rnThe contributions to the method development includern(i) the derivation of a bimolecular charge-transfer rate,rn(ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies,rn(iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energiesrnand (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies.These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED).rnWhen bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter.rnFurthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that a polarization-induced stabilization of a molecule in its charged and neutral states can lead to large shifts, broadening, and traps in the distribution of charge energies. These results are especially important for multi-component systems (the emission layer of an OLED or the donor-acceptor interface of an organic solar cell), if the change in polarizability upon charging (or excitation in case of energy transport) is different for the components. Thus, the polarizability change upon charging or excitation should be added to the set of molecular parameters essential for understanding charge and energy transport in organic semiconductors.rnWe also studied charge transport in self-assembled systems, where intermolecular packing motives induced by side chains can increase electronic couplings between molecules. This leads to larger charge mobility, which is essential to improve devices such as organic field effect transistors, where low carrier mobilities limit the switching frequency.rnHowever, it is not sufficient to match the average local molecular order induced by the sidernchains (such as the pitch angle between consecutive molecules in a discotic mesophase) with maxima of the electronic couplings.rnIt is also important to make the corresponding distributions as narrow as possible compared to the window determined by the closest minima of thernelectronic couplings. This is especially important in one-dimensional systems, where charge transport is limited by the smallest electronic couplings.rnThe immediate implication for compound design is that the side chains should assist the self-assemblingrnprocess not only via soft entropic interactions, but also via stronger specific interactions, such as hydrogen bonding.rnrnrnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zusammmenfassung:Um Phasenseparation in binären Polymermischungen zuuntersuchen, werden zwei dynamische Erweiterungen der selbstkonsistenten Feldtheorie (SCFT)entwickelt. Die erste Methode benutzt eine zeitliche Entwicklung der Dichten und wird dynamische selbstkonsistente Feldtheorie (DSCFT) genannt, während die zweite Methode die zeitliche Propagation der effektiven äußeren Felder der SCFT ausnutzt. Diese Methode wird mit External Potential Dynamics (EPD) bezeichnet. Für DSCFT werden kinetische Koeffizienten verwendet, die entweder die lokale Dynamik von Punktteilchen oder die nichtlokale Dynamik von Rouse'schen Polymeren nachbilden. Die EPD-Methode erzeugt mit einem konstanten kinetischen Koeffizienten die Dynamik von Rouse'schen Ketten und benötigt weniger Rechenzeit als DSCFT. Diese Methoden werden für verschiedene Systeme angewendet.Zuerst wird spinodale Entmischung im Volumen untersucht,wobei der Unterschied zwischen lokaler und nichtlokalerDynamik im Mittelpunkt steht. Um die Gültigkeit derErgebnisse zu überprüfen, werden Monte-Carlo-Simulationen durchgeführt. In Polymermischungen, die von zwei Wänden, die beide die gleiche Sorte Polymere bevorzugen, eingeschränkt werden, wird die Bildung von Anreicherungsschichten an den Wänden untersucht. Für dünne Polymerfilme zwischen antisymmetrischen Wänden, d.h. jede Wand bevorzugt eine andere Polymerspezies, wird die Spannung einer parallel zu den Wänden gebildeten Grenzfläche analysiert und der Phasenübergang von einer anfänglich homogenen Mischung zur lokalisierten Phase betrachtet. Des Weiteren wird die Dynamik von Kapillarwellenmoden untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir betrachten die eindimensionale Heisenberg-Spinkette aus einem neuen und aktuelleren Blickwinkel. Experimentelle Techniken der Herstellung und selbstverständlich auch experimentelle Meßmethoden erlauben nicht nur die Herstellung von Nanopartikeln und Nanodrähten, sondern gestatten es auch, Domänenwände in diesen Strukturen auszumessen. Die meisten heute verwendeten Theorien und Simulationsmethoden haben ihre Grundlage im mikromagnetischen Kontinuumsmodell, daß schon über Jahrzehnte hinweg erforscht und erprobt ist. Wir stellen uns jedoch die Frage, ob die innere diskrete Struktur der Substrate und die quantenmechanischen Effekte bei der Genauigkeit heutiger Messungen in Betracht gezogen werden müssen. Dazu wählen wir einen anderen Ansatz. Wir werden zunächst den wohlbekannten klassischen Fall erweitern, indem wir die diskrete Struktur der Materie in unseren Berechnungen berücksichtigen. Man findet in diesem Formalismus einen strukturellen Phasenübergang zwischen einer Ising-artigen und einer ausgedehnten Wand. Das führt zu bestimmten Korrekturen im Vergleich zum Kontinuumsfall. Der Hauptteil dieser Arbeit wird sich dann mit dem quantenmechanischen Fall beschäftigen. Wir rotieren das System zunächst mit einer Reihe lokaler Transformationen derart, daß alle Spins in die z-Richtung ausgerichtet sind. Im Rahmen einer 1/S-Entwicklung läßt sich der erhaltene neue Hamilton-Operator diagonalisieren. Setzt man hier die klassische Lösung ein, so erhält man Anregungsmoden in diesem Grenzfall. Unsere Resultate erweitern und bestätigen frühere Berechnungen. Mit Hilfe der Numerik wird schließlich der Erwartungswert der Energie minimiert und somit die Form der Domänenwand im quantenmechanischen Fall berechnet. Hieraus ergeben sich auch bestimmte Korrekturen zum kritischen Verhalten des Systems. Diese Ergebnisse sind vollkommen neu.