7 resultados para mKdV-Liouville
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Lo scopo dell’elaborato è dare un'esposizione del problema omogeneo di Sturm-Liouville, ossia lo studio di un tipo particolare di equazioni differenziali ordinarie del secondo ordine soggette a condizioni al contorno.
Resumo:
Questo elaborato si propone di analizzare il collegamento tra olomorfia e armonicità. La prima parte della tesi tratta le funzioni olomorfe, mentre la seconda parte tratta le funzioni armoniche. Per quanto riguarda la seconda parte, inizialmente ci limiteremo a studiare le funzioni armoniche in R^2, sottolineando il legame tra queste e le funzioni olomorfe. Considereremo poi il caso generale, ovvero estenderemo la nozione di funzione armonica ad R^N e osserveremo che molte delle proprietà viste per le funzioni olomorfe valgono anche per le funzioni armoniche. In particolare, vedremo che le formule di media per le funzioni armoniche svolgono un ruolo analogo alla formula integrale di Cauchy per le funzioni olomorfe. Vedremo anche che il Teorema di Liouville per le funzioni armoniche è l’analogo del Teorema di Liouville per le funzioni intere (funzioni olomorfe su tutto C) e, infine, osserveremo che il Principio del massimo forte non è altro che il trasferimento alle funzioni armoniche del Principio del massimo modulo visto nella teoria delle funzioni olomorfe.
Resumo:
In questa tesi studiamo le proprietà fondamentali delle funzioni armoniche. Ricaviamo le formule di media mostrando alcune proprietà importanti, quali la disuguaglianza di Harnack, il teorema di Liouville, il principio del massimo debole e forte. Infine, illustriamo un criterio di risolubilità per il problema di Dirichlet per il Laplaciano in un arbitrario dominio limitato di R^n tramite un metodo noto come metodo di Perron per le funzioni subarmoniche.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.
Resumo:
L'origine e lo sviluppo del concetto di numero trascendente attraversano quasi tutta la storia della matematica ed i risultati più importanti si sono ottenuti solo in tempi relativamente recenti. I numeri trascendenti costituiscono un argomento che ha sempre affascinato i matematici ma fino a poco tempo fa, in una prospettiva di epoche storiche, si conoscevano pochissimi esempi di numeri di cui si sapesse dimostrare la trascendenza. La dimostrazione della trascendenza di pi greco mette fine ai tentativi di risolvere per via elementare la quadratura del cerchio, uno dei problemi classici dell'antichità. Scopo di questa tesi è presentare delle dimostrazioni di esistenza dei numeri trascendenti utilizzabili anche a scopo didattico e dimostrare la trascendenza del numero di Nepero e di pi greco. Ho deciso, inoltre, nel mio lavoro di tesi, di ripercorrere le tappe principali dell'evoluzione storica del concetto di numero trascendente ed ho analizzato quelle che oltre ad essere di grande importanza storica, sono utili ad una migliore comprensione del concetto stesso. La presentazione di queste tappe può essere molto importante, a mio parere, da un punto di vista didattico in quanto i testi di matematica mostrano quasi sempre concetti e teoremi come entità assolute e immutabili, inserite nei giorni nostri, senza fare riferimento al contesto storico ed umano in cui le idee sono nate.
Resumo:
Nell'elaborato si introduce l'operatore del calore e le funzioni caloriche mostrandone alcuni esempi. Di seguito si deduce la soluzione fondamentale dell'operatore H evidenziandone alcune importanti proprietà. Si procede, poi, con l'introduzione dell'Identità di Green per l'operatore del calore e da questa si ricava la formula di media per le funzioni caloriche. Grazie a tale formula di media si evidenzia una cruciale proprietà delle funzioni caloriche: la loro regolarità C-infinito. Di seguito si deduce un'espressione migliorata per la formula di media calorica avente come vantaggio quello di avere un nucleo limitato. Si procede, quindi, mostrando alcune conseguenze dell'espressione migliorata dimostrata: si ricava, infatti, in modo diretto la disuguaglianza di Harnack e il principio di massimo forte. L'elaborato procede, poi, con lo studio del problema di Cauchy relativo all'operatore del calore. Infine si analizzano i teoremi di Liouville per le funzioni caloriche.
Resumo:
L'elaborato è finalizzato a presentare l'analisi degli operatori differenziali agenti in meccanica quantistica e la teoria degli operatori di Sturm-Liouville. Nel primo capitolo vengono analizzati gli operatori differenziali e le relative proprietà. Viene studiata la loro autoaggiunzione su vari domini con diverse condizioni al contorno e vengono tratte delle conclusioni sul loro significato come osservabili. Nel secondo capitolo viene presentato il concetto di spettro e vengono studiate le sue proprietà.Vengono poi analizzati gli spettri degli operatori precedentemente introdotti. Nell'utimo capitolo vengono presentati gli operatori di Sturm-Liouville e alcune proprietà delle equazioni differenziali. Vengono imposte delle specifiche condizioni al contorno che determinano la realizzazione dei sistemi di Sturm-Liouville, di cui vengono studiati due esempi notevoli: le guide d'onda e la conduzione del calore.