60 resultados para ZM21 carburo di silicio SiC MMC extrusion magnesium
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’attività sperimentale presentata in questo elaborato è volta a conoscere le proprietà meccaniche di una lega di magnesio rinforzata con particelle ceramiche (Carburo di silicio SiC). Scopo del lavoro sarà pertanto il confronto fra le proprietà meccaniche del materiale base ZM21 rispetto al materiale prodotto in Israele con rinforzo di carburo di silicio, con particolare riferimento alle proprietà a trazione, a compressione e alla distribuzione di particelle nella matrice (analisi metallografica).
Resumo:
Nella tesi si è affrontata l'analisi strutturale di cilindro e pistone, dello scrambler Ducati 400cc bicilindrico, utilizzando come materiale il carburo di silicio. Ricavati i risultati tramite un modello agli elementi finiti, sono stati confrontati con il materiale di base,cioè l'alluminio.
Resumo:
Nel primo capitolo viene introdotto lo studio eff�ettuato e descritto un metodo di misure successivo alla caratterizzazione della super�ficie. Nel secondo capitolo vengono descritti i campioni analizzati e, nello speci�fico, la crescita attraverso MaCE dei nanofi�li di silicio. Nel terzo capitolo viene descritto lo strumento AFM utilizzato e la teoria della caratterizzazione alla base dello studio condotto. Nella quarta sezione vengono descritti i risultati ottenuti mentre nelle conclusioni viene tratto il risultato dei valori ottenuti di RMS roughness e roughness exponent.
Resumo:
Si riassumono le principali proprietà e applicazioni di dispositivi basati su nanofili. Si descrivono le tecniche utilizzate in laboratorio per analizzare livelli profondi in nanofili di Silicio con particolare attenzione ai concetti teorici alla base di questi metodi.
Resumo:
Questa tesi ha come obiettivo quello di misurare la dipendenza spettrale di alcune proprietà ottiche, come trasmittanza e riflettanza, al fine di ricavare l’energy gap di film sottili costituiti da nanocrystalline silicon oxynitride (nc-SiOxNy) per applicazioni in celle solari HIT (Heterojunction Intrinsic Thin layer). Questi campioni sono stati depositati presso l’Università di Konstanz (Germania) tramite tecnica PECVD (Plasma-Enhanced Chemical Vapor Deposition). Questo materiale risulta ancora poco conosciuto per quanto riguarda le proprietà optoelettroniche e potrebbe presentare una valida alternativa a silicio amorfo (a-Si) e ossido di silicio idrogenato amorfo (a-SiOx:H) che sono attualmente utilizzati in questo campo. Le misure sono state effettuate presso i laboratori del Dipartimento di Fisica e Astronomia, settore di Fisica della Materia, dell’Università di Bologna. I risultati ottenuti mostrano che i campioni che non hanno subito alcun trattamento termico (annealing) presentano un energy gap che cresce linearmente rispetto alla diluizione di protossido di azoto in percentuale. Nei campioni analizzati sottoposto ad annealing a 800°C si è osservato un aumento dell’Eg dopo il trattamento. Un risultato ottimale consiste in un gap energetico maggiore di quello del silicio amorfo (a-Si) e del silicio amorfo idrogenato (a-Si:H), attualmente utilizzati in questa tipologia di celle, per evitare che questo layer assorba la luce solare che deve invece essere trasmessa al silicio sottostante. Per questo motivo i valori ottenuti risultano molto promettenti per future applicazioni fotovoltaiche.
Resumo:
Oggetto di studio di questa tesi è la spettroscopia di livelli profondi (DLTS) in due set di nanofili di silicio cresciuti con metodo MaCE presso l’Università di Jena (Germania)nel team di ricerca del Prof. Vladimir Sivakov, utilizzando oro come catalizzatore. Il primo set di nanofili non ha subito ulteriori procedure dopo la crescita, mentre il secondo set è stato sottoposto ad annealing (stress termico) per 60 minuti alla temperatura di 700C. Scopo delle misure DLTS è quello di rivelare i livelli elettronici intragap e determinare l’influenza del processo di annealing su tali livelli. Dai risultati sperimentali si è osservata la presenza di due trappole per elettroni in entrambi i campioni: nel campione non soggetto ad annealing sono stati trovati i seguenti stati intragap: A, con energia di attivazione EA = EC - 0,20eV e sezione di cattura SA = 7E-18cm2; B, con energia di attivazione EB = EC - 0,46eV e sezione di cattura SB = 8E-18cm2; nel campione soggetto ad annealing sono stati trovati i seguenti stati intragap: C, con energia di attivazione EC = EC - 0,17eV e sezione di cattura SC = 3E-17cm2; D, con energia di attivazione ED = EC - 0,30eV e sezione di cattura SD = 3E-19cm2. Risulta quindi evidente che il processo di annealing determina una modifica della configurazione dei livelli intragap. In particolare la trappola B, posizionata nelle vicinanze della metà del bandgap, scompare in seguito allo stress termico. Dalle ricerche fatte in letteratura, potrebbe trattarsi di un livello energetico generato dalla presenza di idrogeno, incorporato nei nanofili durante la crescita. Questi risultati si propongono come una base di partenza per studi futuri riguardanti l’identificazione certa dei difetti responsabili di ciascun livello intragap rivelato, mediante ricerche approfondite in letteratura (riguardo i livelli intragap del silicio bulk) e simulazioni.
Resumo:
Il presente lavoro è stato svolto presso la struttura di Radioterapia del Policlinico S. Orsola - Malpighi e consiste nella caratterizzazione di un sistema di acquisizione per immagini portali (EPID) come dosimetro relativo bidimensionale da usare nei controlli di qualità sui LINAC. L’oggetto di studio è il sistema di acquisizione di immagini portali OPTIVUE 1000ST (Siemens), dispositivo flat panel di silicio amorfo (a-Si) assemblato all’acceleratore lineare Siemens Oncor. La risposta dell’EPID è stata analizzata variando i parametri di consegna della dose, mantenendo fissa la distanza fuoco-rivelatore. Le condizioni di stabilità, ottimali per lavorare, si hanno intorno alle 50 U.M. Dalle curve dei livelli di grigio ottenute risulta evidente che in diverse condizioni d’irraggiamento il sistema risponde con curve di Dose-Risposta differenti, pur restando nello stesso range di dose. Lo studio include verifiche sperimentali effettuate con l’OPTIVUE e usate per espletare alcuni controlli di qualità di tipo geometrico come la coincidenza campo luminoso – campo radiante e la verifica del corretto posizionamento delle lamelle del collimatore multilamellare. Le immagini portali acquisite verranno poi confrontate con quelle ottenute irraggiando tradizionalmente una CR (computed radiography), per la coincidenza e una pellicola radiocromica EBT 3, per l’MLC. I risultati ottenuti mostrano che, per il primo controllo, in entrambi i modi, si è avuta corrispondenza tra campo radiante e campo luminoso; il confronto fra le due metodiche di misura risulta consistente entro i valori di deviazioni standard calcolati, l’OPTIVUE può essere utilizzato efficacemente in tale controllo di qualità. Nel secondo controllo abbiamo ottenuto differenze negli errori di posizionamento delle lamelle individuati dai due sistemi di verifica dell’ordine di grandezza dei limiti di risoluzione spaziale. L’OPTIVUE è in grado di riconoscere errori di posizionamento preesistenti con un’incertezza che ha come limite la dimensione del pixel. Il sistema EPID, quindi, è efficace, affidabile, economico e rapido.
Resumo:
Scopo di questa tesi di laurea sperimentale (LM) è stata la produzione di geopolimeri a base metacaolinitica con una porosità controllata. Le principali tematiche affrontate sono state: -la produzione di resine geopolimeriche, studiate per individuare le condizioni ottimali ed ottenere successivamente geopolimeri con un’ultra-macro-porosità indotta; -lo studio dell’effetto della quantità dell’acqua di reazione sulla micro- e meso-porosità intrinseche della struttura geopolimerica; -la realizzazione di schiume geopolimeriche, aggiungendo polvere di Si, e lo studio delle condizioni di foaming in situ; -la preparazione di schiume ceramiche a base di allumina, consolidate per via geopolimerica. Le principali proprietà dei campioni così ottenuti (porosità, area superficiale specifica, grado di geopolimerizzazione, comportamento termico, capacità di scambio ionico sia delle resine geopolimeriche che delle schiume, ecc.) sono state caratterizzate approfonditamente. Le principali evidenze sperimentali riscontrate sono: A)Effetto dell’acqua di reazione: la porosità intrinseca del geopolimero aumenta, sia come quantità che come dimensione, all’aumentare del contenuto di acqua. Un’eccessiva diluizione porta ad una minore formazione di nuclei con l’ottenimento di nano-precipitati di maggior dimensioni. Nelle schiume geopolimeriche, l’acqua gioca un ruolo fondamentale nell’espansione: deve essere presente un equilibrio ottimale tra la pressione esercitata dall’H2 e la resistenza opposta dalla parete del poro in formazione. B)Effetto dell’aggiunta di silicio metallico: un elevato contenuto di silicio influenza negativamente la reazione di geopolimerizzazione, in particolare quando associato a più elevate temperature di consolidamento (80°C), determinando una bassa geopolimerizzazione nei campioni. C)Effetto del grado di geopolimerizzazione e della micro- e macro-struttura: un basso grado di geopolimerizzazione diminuisce l’accessibilità della matrice geopolimerica determinata per scambio ionico e la porosità intrinseca determinata per desorbimento di N2. Il grado di geopolimerizzazione influenza anche le proprietà termiche: durante i test dilatometrici, se il campione non è completamente geopolimerizzato, si ha un’espansione che termina con la sinterizzazione e nell’intervallo tra i 400 e i 600 °C è presente un flesso, attribuibile alla transizione vetrosa del silicato di potassio non reagito. Le prove termiche evidenziano come la massima temperatura di utilizzo delle resine geopolimeriche sia di circa 800 °C.
Resumo:
I materiali per applicazioni fotovoltaiche hanno destato un interesse crescente nella comunità scienti�ca negli ultimi decenni. Le celle HIT (Het- erojunction Intrinsic Thin Layer ) sono dispositivi di ultima generazione che hanno raggiunto e�cienza elevata mantenendo bassi i costi di pro- duzione, e impiegano silicio amorfo (a-Si) come strato emettitore per il suo buon assorbimento della luce e silicio cristallino come regione attiva. La struttura amorfa del silicio presenta però una bassa conducibilità, oltre ad e�etti di degradazione che limitano considerevolmente la durevolezza di una cella. Per questo motivo si stanno cercando possibili alternative al silicio amorfo, in particolare strutture multifase e composti di silicio, ossigeno ed azoto. In questo lavoro sono esposti i risultati dell'analisi di sottili lay- er di Silicon Oxynitride ossigenato (SiOx Ny :H), in forma microcristallina, deposti tramite PECVD (P lasma-Enhanced Chemical Vapor Deposition) su vetro presso l'università di Costanza. La forma microcristallina è una distribuzione di agglomerati cristallini dell'ordine di grandezza di un mi- crometro in una matrice di silicio amorfo, e attualmente le sue proprietà ottiche ed elettroniche non sono ancora state studiate in maniera appro- fondita. Nonostante ciò, è invece evidente che la fase microstallina non presenta tanti difetti intrinseci come la forma amorfa e ne è quindi una val- ida alternativa. In questa ottica, si è svolto uno studio sperimentale delle proprietà ottiche di layers in forma microcristallina di SiOx Ny :H, quali la misura del gap energetico. I risultati sperimentali, volti a trovare la dipen- denza delle caratteristiche dai parametri di deposizione dei layers, hanno mostrato una riduzione del gap energetico con la concentrazione di N2 O, uno dei gas precursori utilizzati nella deposizione dei layers in camera di processo. In conclusione si può dire che il μc−SiOx Ny :H ha le buone carat- teristiche tipiche dei semiconduttori cristallini, che unite alla possibilità di regolare il valore del gap energetico in base alle scelte in fase di deposizione, gli conferisce buone prospettive per applicazioni in celle fotovoltaiche, come emettitore in celle ad eterogiunzione.
Resumo:
Nell'ultimo decennio sono stati sviluppati numerosi materiali π-coniugati contenenti unità tiofeniche per applicazioni in dispositivi organici a film sottile. Nel campo delle celle solari, la possibilità di creare dispositivi basati sull’utilizzo di materiali organici, rispetto ai dispositivi attualmente in commercio a base di silicio, ha suscitato grande interesse soprattutto per la possibilità di realizzare dispositivi su larga area con basso costo di produzione e su substrati flessibili. Gli oligo- e i politiofeni sono eccellenti candidati grazie alle ottime proprietà di trasporto di carica e alle caratteristiche di assorbimento di luce. In celle solari di tipo Bulk-Heterojunction (BHJ), ad esempio, il poli(3-esiltiofene) è uno tra i materiali più studiati. Ad oggi, con il P3HT sono state raggiunte efficienze certificate superiori all’8%, variando sia parametri dipendenti dalla struttura molecolare, come ad esempio il peso molecolare, la regioregolarità delle catene alchiliche, il grado di polidispersità, il grado di polimerizzazione, sia parametri da cui dipende l’organizzazione della blend donatore-accettore. Per superare l’efficienza di conversione ottenuta con i polimeri classici come il P3HT è necessario progettare e sintetizzare materiali con precise caratteristiche: basso energy gap per aumentare l’assorbimento di luce, elevata mobilità di carica per avere una rapida estrazione delle cariche, posizione ottimale degli orbitali di frontiera per garantire una efficiente dissociazione dell’eccitone ed infine buona solubilità per migliorare la processabilità. Il presente lavoro di tesi si è articolato nei seguenti punti: sintesi di oligo- e politiofeni tioalchil sostituiti con inserzione di unità benzotiadiazolo per massimizzare l’assorbimento ed abbassare il gap energetico; studio dell’effetto della ramificazione del gruppo tioalchilico sull’organizzazione supramolecolare allo stato solido e successiva ottimizzazione della morfologia del film solido variando metodi di deposizione e solventi; applicazione degli oligomeri e dei polimeri sintetizzati come materiali donatori in celle fotovoltaiche di tipo Bulk-Heterojunction in presenza di fenil-C61-butirrato di metile (PCBM) come materiale accettore.
Resumo:
Con l’incremento della popolazione mondiale e la conseguente crescita del fabbisogno di energia dovuta a nuovi lavori e sempre più macchinari in circolazione, è insorta l'esigenza di produrre più energia elettrica. A partire dagli anni ’50 numerosi scienziati hanno analizzato il problema energetico e sono giunti alla conclusione che fonti di energia come petrolio, carbone e gas non erano in grado di soddisfare il bisogno umano sul lungo termine e si è quindi passati alla ricerca di altre fonti di energia come il nucleare. Oggi, grazie ad un progetto ed uno studio di circa 50 anni fa – finalizzato alla alimentazione di satelliti geostazionari - , si sta sempre di più affermando la scelta del fotovoltaico, in quanto rappresenta un’energia pulita e facilmente utilizzabile anche nei luoghi dove non è possibile avere un allaccio alla normale rete elettrica. La ricerca di questo nuovo metodo di produrre energia, che tratta la conversione di luce solare in energia elettrica, si è evoluta, differenziando materiali e metodi di fabbricazione delle celle fotovoltaiche, e quindi anche dei moduli fotovoltaici. Con la crescente produzione di apparati elettronici si è arrivati però ad avere un nuovo problema: il consumo sempre maggiore di silicio con un conseguente aumento di prezzo. Negli ultimi anni il prezzo del silicio è significativamente aumentato e questo va a pesare sull’economia del pannello fotovoltaico, dato che questo materiale incide per il 40-50% sul costo di produzione. Per questo motivo si sono voluti trovare altri materiali e metodi in grado di sostituire il silicio per la costruzione di pannelli fotovoltaici, con il seguire di nuovi studi su materiali e metodi di fabbricazione delle celle. Ma data la conoscenza e lo studio dovuto ai vari utilizzi nell’elettronica del silicio, si è anche studiato un metodo per ottenere una riduzione del silicio utilizzato, creando wafer in silicio sempre più sottili, cercando di abbassare il rapporto costo-watt , in grado di abbassare i costi di produzione e vendita.
Resumo:
Il concetto di cella a eterogiunzione in silicio ha portato allo sviluppo di dispositivi in grado di convertire oltre il 25% dello spettro solare. Il raggiungimento di alte efficienze di conversione è dovuto alla ricerca nel campo dei vari strati a base di silicio cristallino, amorfo e nanocristallino impiegati per formare le giunzioni. In particolare, lo studio e l’ottimizzazione dello strato di emettitore in silicio amorfo o nanocristallino insieme all’inserimento di uno strato amorfo intrinseco passivante, ha permesso la realizzazione di celle con alte tensioni di circuito aperto. Questi materiali contengono tuttavia dei difetti legati alla struttura amorfa, che compromettono le prestazioni dei dispositivi abbassandone la corrente di cortocircuito. Una possibile soluzione al problema può essere ottenuta formando composti che incorporano elementi come azoto e ossigeno e aumentando il grado di cristallinità del materiale con un processo di annealing. In questa tesi viene studiato l’energy gap di campioni di Silicon Oxynitride (SiOxNy:H) in funzione delle diverse condizioni di crescita e di annealing attraverso il programma di simulazione spettroscopica Optical.
Resumo:
Negli ultimi anni si è assistito nel panorama mondiale ad un notevole ed importante cambiamento nell’asset della produzione dell’energia elettrica. L’aumentare del costo nell'estrazione dei combustibili fossili ed il conseguente impatto ambientale che questi hanno nell'atmosfera ha influito notevolmente sullo sviluppo e sulla diffusione della tecnologia fotovoltaica. L’evoluzione di questa tecnologia ha permesso di raggiungere la “grid parity”, ossia l’uguaglianza tra il costo di 1 kWh prodotto dal fotovoltaico con 1 kWh prodotto da fonti fossili, per molte aree del pianeta. Tale tecnologia non è recente, già negli anni ‘60 si svilupparono i primi studi a riguardo, ma negli ultimi anni ha subito notevoli migliorie che l’hanno portata ad essere competitiva nel settore dell’energia elettrica. Il presente lavoro di tesi riporta una rassegna delle celle solari a base di silicio, a partire dal silicio monocristallino, al silicio poli e multi cristallino, fino ad arrivare a celle a film sottile o celle costituite da materiali multi-fase contenenti strutture quantiche e nanocristalli di Si. Negli ultimi anni tutti gli studi si stanno concentrando su un nuovo tipo di fotovoltaico, quello di terza generazione, il cui scopo è quello di ottenere dispositivi che, ad un prezzo molto contenuto dovuto ad un utilizzo di materiali economici come i Si-NCs (nano cristalli di silicio), possano garantire elevate efficienze in modo tale che la tecnologia fotovoltaica sia in grado di affermarsi definitivamente nel settore dell’energia.
Resumo:
Il campo della Bioelettronica si è sviluppato a partire dal 18 secolo con l’ esperimento di Luigi Galvani che, applicando uno stimolo elettrico ai muscoli di una rana dissezionata, ne osservò il movimento. Da questo esperimento si è aperta la strada che ha portato ad oggi ad un grande sviluppo tecnologico nella realizzazione di dispositivi elettronici che permettono di offrire un miglioramento generale delle condizioni di vita. Come spesso accade con le tecnologie emergenti, i materiali sono la maggiore limitazione nello sviluppo di nuove applicazioni. Questo è certamente il caso della Bioelettronica. I materiali elettronici organici, nella forma di polimeri conduttivi, hanno mostrato di poter dotare gli strumenti elettronici di grandi vantaggi rispetto a quelli tradizionali a base di silicio, in virtù delle loro proprietà meccaniche ed elettroniche, della loro biocompatibilità e dei bassi costi di produzione. E’ da questi studi che nasce più propriamente il campo della Bioelettronica Organica, che si basa sulla applicazione di semiconduttori a base di carbonio in forma di piccole molecole coniugate e di polimeri, e del loro utilizzo nei dispositivi elettronici. Con il termine di ‘Bioelettronica organica’, quindi, si descrive l’accoppiamento tra dispositivi elettronici organici e il mondo biologico, accoppiamento che si sviluppa in due direzioni: da un lato una reazione o un processo biologico può trasferire un segnale ad un dispositivo elettronico organico, dall’altro un dispositivo elettronico organico può avviare un processo biologico.
Resumo:
Il grafene è un cristallo bidimensionale composto da uno strato monoatomico planare di atomi di carbonio ibridizzati sp2. In ogni modo, il perfezionamento delle tecniche di produzione e di trasferimento del materiale è a tutt’oggi una attività di ricerca alla frontiera, e in questo contesto si è inserito il mio lavoro di tesi. Svolto nella sede di Bologna dell’Istituto per la Microelettronica ed i Microsistemi del Consiglio Nazionale delle Ricerche (IMM-CNR), ha avuto un duplice obiettivo. Il primo è stato quello di studiare la procedura di trasferimento su un wafer di ossido di silicio (SiO2) del grafene cresciuto per deposizione chimica da fase vapore (chemical vapor deposition) su rame normalmente impiegata in laboratorio. Il secondo è stato invece quello di proporre e verificare possibili modifiche con lo scopo di provare a risolvere uno dei problemi che ci si è trovati ad affrontare, nello specifico l’elevato numero di danni strutturali e di rotture indotti nella membrana trasferita. Dopo un capitolo iniziale di introduzione alla teoria ed alle proprietà fisiche del grafene, nel secondo verranno illustrate le tecniche principali con le quali attualmente si produce il materiale, con un focus particolare sulla chemical vapor deposition, tecnica impiegata all’IMM, e da me seguita per la produzione dei campioni da studiare. Il terzo capitolo tratterà nel dettaglio il processo di trasferimento dal substrato di crescita a quello finale, realizzato attraverso uno strato sacrificale di PMMA. Dopo una descrizione approfondita dei singoli passaggi, verrà mostrato il confronto tra i risultati ottenuti su campioni di grafene traferiti su ossido di silicio, con la tecnica inizialmente adottata e quella modificata. Come verrà discusso, nonostante non tutti problemi siano stati risolti, le modifiche apportante al processo di trasferimento hanno permesso di raggiungere l’obiettivo iniziale, cioè di migliorare in modo apprezzabile la qualità della pellicola dal punto di vista dell’integrità strutturale.