18 resultados para Hypothèse de Riemann
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il teorema della mappa di Riemann è un risultato fondamentale dell'analisi complessa che afferma l'esistenza di un biolomorfismo tra un qualsiasi dominio semplicemente connesso incluso strettamente nel piano ed il disco unità. Si tratta di un teorema di grande importanza e generalità, dato che non si fa alcuna ipotesi sul bordo del dominio considerato. Inoltre ha applicazioni in diverse aree della matematica, ad esempio nella topologia: può infatti essere usato per dimostrare che due domini semplicemente connessi del piano sono tra loro omeomorfi. Presentiamo in questa tesi due diverse dimostrazioni del teorema.
Resumo:
Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
In questa tesi si descrivono la funzione zeta di Riemann, la costante di Eulero-Mascheroni e la funzione gamma di Eulero. Si riportano i legami tra questi e si illustra brevemente l'ipotesi di Riemann degli zeri non banali della funzione zeta, ovvero l'ipotesi della distribuzione dei numeri primi nella retta dei numeri reali.
Resumo:
Le ricerche di carattere eustatico, mareografico, climatico, archeologico e geocronologico, sviluppatesi soprattutto nell’ultimo ventennio, hanno messo in evidenza che gran parte delle piane costiere italiane risulta soggetta al rischio di allagamento per ingressione marina dovuta alla risalita relativa del livello medio del mare. Tale rischio è la conseguenza dell’interazione tra la presenza di elementi antropici e fenomeni di diversa natura, spesso difficilmente discriminabili e quantificabili, caratterizzati da magnitudo e velocità molto diverse tra loro. Tra le cause preponderanti che determinano l’ingressione marina possono essere individuati alcuni fenomeni naturali, climatici e geologici, i quali risultano fortemente influenzati dalle attività umane soprattutto a partire dal XX secolo. Tra questi si individuano: - la risalita del livello del mare, principalmente come conseguenza del superamento dell’ultimo acme glaciale e dello scioglimento delle grandi calotte continentali; - la subsidenza. Vaste porzioni delle piane costiere italiane risultano soggette a fenomeni di subsidenza. In certe zone questa assume proporzioni notevoli: per la fascia costiera emiliano-romagnola si registrano ratei compresi tra 1 e 3 cm/anno. Tale subsidenza è spesso il risultato della sovrapposizione tra fenomeni naturali (neotettonica, costipamento di sedimenti, ecc.) e fenomeni indotti dall’uomo (emungimenti delle falde idriche, sfruttamento di giacimenti metaniferi, escavazione di materiali per l’edilizia, ecc.); - terreni ad elevato contenuto organico: la presenza di depositi fortemente costipabili può causare la depressione del piano di campagna come conseguenza di abbassamenti del livello della falda superficiale (per drenaggi, opere di bonifica, emungimenti), dello sviluppo dei processi di ossidazione e decomposizione nei terreni stessi, del costipamento di questi sotto il proprio peso, della carenza di nuovi apporti solidi conseguente alla diminuita frequenza delle esondazioni dei corsi d’acqua; - morfologia: tra i fattori di rischio rientra l’assetto morfologico della piana e, in particolare il tipo di costa (lidi, spiagge, cordoni dunari in smantellamento, ecc. ), la presenza di aree depresse o comunque vicine al livello del mare (fino a 1-2 m s.l.m.), le caratteristiche dei fondali antistanti (batimetria, profilo trasversale, granulometria dei sedimenti, barre sommerse, assenza di barriere biologiche, ecc.); - stato della linea di costa in termini di processi erosivi dovuti ad attività umane (urbanizzazione del litorale, prelievo inerti, costruzione di barriere, ecc.) o alle dinamiche idro-sedimentarie naturali cui risulta soggetta (correnti litoranee, apporti di materiale, ecc. ). Scopo del presente studio è quello di valutare la probabilità di ingressione del mare nel tratto costiero emiliano-romagnolo del Lido delle Nazioni, la velocità di propagazione del fronte d’onda, facendo riferimento allo schema idraulico del crollo di una diga su letto asciutto (problema di Riemann) basato sul metodo delle caratteristiche, e di modellare la propagazione dell’inondazione nell’entroterra, conseguente all’innalzamento del medio mare . Per simulare tale processo è stato utilizzato il complesso codice di calcolo bidimensionale Mike 21. La fase iniziale di tale lavoro ha comportato la raccolta ed elaborazione mediante sistema Arcgis dei dati LIDAR ed idrografici multibeam , grazie ai quali si è provveduto a ricostruire la topo-batimetria di dettaglio della zona esaminata. Nel primo capitolo è stato sviluppato il problema del cambiamento climatico globale in atto e della conseguente variazione del livello marino che, secondo quanto riportato dall’IPCC nel rapporto del 2007, dovrebbe aumentare al 2100 mediamente tra i 28 ed i 43 cm. Nel secondo e terzo capitolo è stata effettuata un’analisi bibliografica delle metodologie per la modellazione della propagazione delle onde a fronte ripido con particolare attenzione ai fenomeni di breaching delle difese rigide ed ambientali. Sono state studiate le fenomenologie che possono inficiare la stabilità dei rilevati arginali, realizzati sia in corrispondenza dei corsi d’acqua, sia in corrispondenza del mare, a discapito della protezione idraulica del territorio ovvero dell’incolumità fisica dell’uomo e dei territori in cui esso vive e produce. In un rilevato arginale, quale che sia la causa innescante la formazione di breccia, la generazione di un’onda di piena conseguente la rottura è sempre determinata da un’azione erosiva (seepage o overtopping) esercitata dall’acqua sui materiali sciolti costituenti il corpo del rilevato. Perciò gran parte dello studio in materia di brecce arginali è incentrato sulla ricostruzione di siffatti eventi di rottura. Nel quarto capitolo è stata calcolata la probabilità, in 5 anni, di avere un allagamento nella zona di interesse e la velocità di propagazione del fronte d’onda. Inoltre è stata effettuata un’analisi delle condizioni meteo marine attuali (clima ondoso, livelli del mare e correnti) al largo della costa emiliano-romagnola, le cui problematiche e linee di intervento per la difesa sono descritte nel quinto capitolo, con particolare riferimento alla costa ferrarese, oggetto negli ultimi anni di continui interventi antropici. Introdotto il sistema Gis e le sue caratteristiche, si è passati a descrivere le varie fasi che hanno permesso di avere in output il file delle coordinate x, y, z dei punti significativi della costa, indispensabili al fine della simulazione Mike 21, le cui proprietà sono sviluppate nel sesto capitolo.
Resumo:
Scopo della tesi è di estendere un celebre teorema di Montel, sulle famiglie normali di funzioni olomorfe, all'ambiente sub-ellittico delle famiglie di soluzioni u dell'equazione Lu=0, dove L appartiene ad un'ampia classe di operatori differenziali alle derivate parziali reali del secondo ordine in forma di divergenza, comprendente i sub-Laplaciani sui gruppi di Carnot, i Laplaciani sub-ellittici su arbitrari gruppi di Lie, oltre all'operatore di Laplace-Beltrami su varietà di Riemann. A questo scopo, forniremo una versione sub-ellittica di un altro notevole risultato, dovuto a Koebe, che caratterizza le funzioni armoniche come punti fissi di opportuni operatori integrali di media con nuclei non banali. Sarà fornito anche un adeguato sostituto della formula integrale di Cauchy.
Resumo:
Questo elaborato espone l'equivalenza tra la relatività generale di Einstein e una teoria poco conosciuta chiamata Gravità Teleparallela. Sebbene possono sembrare diverse, esse sono due modi equivalenti di vedere l'universo, la prima con spaziotempo curvo, curvatura e traiettorie geodetiche; la seconda con spazio piatto e la curvatura che si comporta come una forza. Per queste teorie si rivelano fondamentali elementi di geometria differenziale e tensoriale, come i tensori metrici, tensori di Riemann, derivate covarianti, oltre ai concetti fisici di tetrade, connessioni di Lorentz, sistemi inerziali e non.
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
In questa tesi si studiano alcune proprietà fondamentali delle funzioni Zeta e L associate ad una curva ellittica. In particolare, si dimostra la razionalità della funzione Zeta e l'ipotesi di Riemann per due famiglie specifiche di curve ellittiche. Si studia poi il problema dell'esistenza di un prolungamento analitico al piano complesso della funzione L di una curva ellittica con moltiplicazione complessa, attraverso l'analisi diretta di due casi particolari.
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.