4 resultados para Hopf Bifurcations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.
Resumo:
L'obiettivo della tesi è studiare la dinamica di un random walk su network. Essa è inoltre suddivisa in due parti: la prima è prettamente teorica, mentre la seconda analizza i risultati ottenuti mediante simulazioni. La parte teorica è caratterizzata dall'introduzione di concetti chiave per comprendere i random walk, come i processi di Markov e la Master Equation. Dopo aver fornito un esempio intuitivo di random walk nel caso unidimensionale, tale concetto viene generalizzato. Così può essere introdotta la Master Equation che determina l'evoluzione del sistema. Successivamente si illustrano i concetti di linearità e non linearità, fondamentali per la parte di simulazione. Nella seconda parte si studia il comportamento di un random walk su network nel caso lineare e non lineare, studiando le caratteristiche della soluzione stazionaria. La non linearità introdotta simula un comportamento egoista da parte di popolazioni in interazioni. In particolare si dimostra l'esistenza di una Biforcazione di Hopf.
Resumo:
Definizioni e enunciati riguardo al gruppo fondamentale, alle azioni di gruppo, ai rivestimenti, alle varietà topologiche, differenziabili e riemanniane, alle isometrie e ai gruppi discreti di isometrie. Approfondimento riguardo alle superfici connesse, compatte e orientabili con classificazione topologica, definizione di curvatura gaussiana con classificazione delle superfici in base al valore della curvatura, teorema di Killing-Hopf, teorema di uniformizzazione, enunciato del teorema che verrà dimostrato: la sfera è l'unica superficie connessa, compatta e orientabile ellittica, il toro è l'unica piatta, le somme connesse di g tori (g>1) sono iperboliche. Descrizione del piano euclideo con relativa metrica, descrizione delle sue isometrie, teorema di Chasles con dimostrazione, dimostrazione del toro come unica superficie connessa, compatta e orientabile piatta. Descrizione della sfera con relativa metrica, descrizione delle sue isometrie, dimostrazione della semplicità di SO(3), dimostrazione della sfera come unica superficie connessa, compatta e orientabile ellittica. Descrizione di due modelli del piano iperbolico, descrizione delle sue isometrie, dimostrazione del fatto che le somme connesse di g tori (g>1) sono iperboliche. Definizione di gruppo Fuchsiano e di spazio di Teichmuller.
Resumo:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.