2 resultados para Hopf Bifurcations
em CaltechTHESIS
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
Cardiovascular diseases (CVDs) have reached an epidemic proportion in the US and worldwide with serious consequences in terms of human suffering and economic impact. More than one third of American adults are suffering from CVDs. The total direct and indirect costs of CVDs are more than $500 billion per year. Therefore, there is an urgent need to develop noninvasive diagnostics methods, to design minimally invasive assist devices, and to develop economical and easy-to-use monitoring systems for cardiovascular diseases. In order to achieve these goals, it is necessary to gain a better understanding of the subsystems that constitute the cardiovascular system. The aorta is one of these subsystems whose role in cardiovascular functioning has been underestimated. Traditionally, the aorta and its branches have been viewed as resistive conduits connected to an active pump (left ventricle of the heart). However, this perception fails to explain many observed physiological results. My goal in this thesis is to demonstrate the subtle but important role of the aorta as a system, with focus on the wave dynamics in the aorta.
The operation of a healthy heart is based on an optimized balance between its pumping characteristics and the hemodynamics of the aorta and vascular branches. The delicate balance between the aorta and heart can be impaired due to aging, smoking, or disease. The heart generates pulsatile flow that produces pressure and flow waves as it enters into the compliant aorta. These aortic waves propagate and reflect from reflection sites (bifurcations and tapering). They can act constructively and assist the blood circulation. However, they may act destructively, promoting diseases or initiating sudden cardiac death. These waves also carry information about the diseases of the heart, vascular disease, and coupling of heart and aorta. In order to elucidate the role of the aorta as a dynamic system, the interplay between the dominant wave dynamic parameters is investigated in this study. These parameters are heart rate, aortic compliance (wave speed), and locations of reflection sites. Both computational and experimental approaches have been used in this research. In some cases, the results are further explained using theoretical models.
The main findings of this study are as follows: (i) developing a physiologically realistic outflow boundary condition for blood flow modeling in a compliant vasculature; (ii) demonstrating that pulse pressure as a single index cannot predict the true level of pulsatile workload on the left ventricle; (iii) proving that there is an optimum heart rate in which the pulsatile workload of the heart is minimized and that the optimum heart rate shifts to a higher value as aortic rigidity increases; (iv) introducing a simple bio-inspired device for correction and optimization of aortic wave reflection that reduces the workload on the heart; (v) deriving a non-dimensional number that can predict the optimum wave dynamic state in a mammalian cardiovascular system; (vi) demonstrating that waves can create a pumping effect in the aorta; (vii) introducing a system parameter and a new medical index, Intrinsic Frequency, that can be used for noninvasive diagnosis of heart and vascular diseases; and (viii) proposing a new medical hypothesis for sudden cardiac death in young athletes.