13 resultados para HPC

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro di tesi si inserisce nell’ambito della classificazione di dati ad alta dimensionalità, sviluppando un algoritmo basato sul metodo della Discriminant Analysis. Esso classifica i campioni attraverso le variabili prese a coppie formando un network a partire da quelle che hanno una performance sufficientemente elevata. Successivamente, l’algoritmo si avvale di proprietà topologiche dei network (in particolare la ricerca di subnetwork e misure di centralità di singoli nodi) per ottenere varie signature (sottoinsiemi delle variabili iniziali) con performance ottimali di classificazione e caratterizzate da una bassa dimensionalità (dell’ordine di 101, inferiore di almeno un fattore 103 rispetto alle variabili di partenza nei problemi trattati). Per fare ciò, l’algoritmo comprende una parte di definizione del network e un’altra di selezione e riduzione della signature, calcolando ad ogni passaggio la nuova capacità di classificazione operando test di cross-validazione (k-fold o leave- one-out). Considerato l’alto numero di variabili coinvolte nei problemi trattati – dell’ordine di 104 – l’algoritmo è stato necessariamente implementato su High-Performance Computer, con lo sviluppo in parallelo delle parti più onerose del codice C++, nella fattispecie il calcolo vero e proprio del di- scriminante e il sorting finale dei risultati. L’applicazione qui studiata è a dati high-throughput in ambito genetico, riguardanti l’espressione genica a livello cellulare, settore in cui i database frequentemente sono costituiti da un numero elevato di variabili (104 −105) a fronte di un basso numero di campioni (101 −102). In campo medico-clinico, la determinazione di signature a bassa dimensionalità per la discriminazione e classificazione di campioni (e.g. sano/malato, responder/not-responder, ecc.) è un problema di fondamentale importanza, ad esempio per la messa a punto di strategie terapeutiche personalizzate per specifici sottogruppi di pazienti attraverso la realizzazione di kit diagnostici per l’analisi di profili di espressione applicabili su larga scala. L’analisi effettuata in questa tesi su vari tipi di dati reali mostra che il metodo proposto, anche in confronto ad altri metodi esistenti basati o me- no sull’approccio a network, fornisce performance ottime, tenendo conto del fatto che il metodo produce signature con elevate performance di classifica- zione e contemporaneamente mantenendo molto ridotto il numero di variabili utilizzate per questo scopo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo lavoro di tesi sono state evidenziate alcune problematiche relative alle macchine exascale (sistemi che sviluppano un exaflops di Potenza di calcolo) e all'evoluzione dei software che saranno eseguiti su questi sistemi, prendendo in esame principalmente la necessità del loro sviluppo, in quanto indispensabili per lo studio di problemi scientifici e tecnologici di più grandi dimensioni, con particolare attenzione alla Material Science, che è uno dei campi che ha avuto maggiori sviluppi grazie all'utilizzo di supercomputer, ed ad uno dei codici HPC più utilizzati in questo contesto: Quantum ESPRESSO. Dal punto di vista del software sono state presentate le prime misure di efficienza energetica su architettura ibrida grazie al prototipo di cluster EURORA sul software Quantum ESPRESSO. Queste misure sono le prime ad essere state pubblicate nel contesto software per la Material Science e serviranno come baseline per future ottimizzazioni basate sull'efficienza energetica. Nelle macchine exascale infatti uno dei requisiti per l'accesso sarà la capacità di essere energeticamente efficiente, così come oggi è un requisito la scalabilità del codice. Un altro aspetto molto importante, riguardante le macchine exascale, è la riduzione del numero di comunicazioni che riduce il costo energetico dell'algoritmo parallelo, poiché in questi nuovi sistemi costerà di più, da un punto di vista energetico, spostare i dati che calcolarli. Per tale motivo in questo lavoro sono state esposte una strategia, e la relativa implementazione, per aumentare la località dei dati in uno degli algoritmi più dispendiosi, dal punto di vista computazionale, in Quantum ESPRESSO: Fast Fourier Transform (FFT). Per portare i software attuali su una macchina exascale bisogna iniziare a testare la robustezza di tali software e i loro workflow su test case che stressino al massimo le macchine attualmente a disposizione. In questa tesi per testare il flusso di lavoro di Quantum ESPRESSO e WanT, un software per calcolo di trasporto, è stato caratterizzato un sistema scientificamente rilevante costituito da un cristallo di PDI - FCN2 che viene utilizzato per la costruzione di transistor organici OFET. Infine è stato simulato un dispositivo ideale costituito da due elettrodi in oro con al centro una singola molecola organica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Performance Computing e una tecnologia usata dai cluster computazionali per creare sistemi di elaborazione che sono in grado di fornire servizi molto piu potenti rispetto ai computer tradizionali. Di conseguenza la tecnologia HPC e diventata un fattore determinante nella competizione industriale e nella ricerca. I sistemi HPC continuano a crescere in termini di nodi e core. Le previsioni indicano che il numero dei nodi arrivera a un milione a breve. Questo tipo di architettura presenta anche dei costi molto alti in termini del consumo delle risorse, che diventano insostenibili per il mercato industriale. Un scheduler centralizzato non e in grado di gestire un numero di risorse cosi alto, mantenendo un tempo di risposta ragionevole. In questa tesi viene presentato un modello di scheduling distribuito che si basa sulla programmazione a vincoli e che modella il problema dello scheduling grazie a una serie di vincoli temporali e vincoli sulle risorse che devono essere soddisfatti. Lo scheduler cerca di ottimizzare le performance delle risorse e tende ad avvicinarsi a un profilo di consumo desiderato, considerato ottimale. Vengono analizzati vari modelli diversi e ognuno di questi viene testato in vari ambienti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LHC experiments produce an enormous amount of data, estimated of the order of a few PetaBytes per year. Data management takes place using the Worldwide LHC Computing Grid (WLCG) grid infrastructure, both for storage and processing operations. However, in recent years, many more resources are available on High Performance Computing (HPC) farms, which generally have many computing nodes with a high number of processors. Large collaborations are working to use these resources in the most efficient way, compatibly with the constraints imposed by computing models (data distributed on the Grid, authentication, software dependencies, etc.). The aim of this thesis project is to develop a software framework that allows users to process a typical data analysis workflow of the ATLAS experiment on HPC systems. The developed analysis framework shall be deployed on the computing resources of the Open Physics Hub project and on the CINECA Marconi100 cluster, in view of the switch-on of the Leonardo supercomputer, foreseen in 2023.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern High-Performance Computing HPC systems are gradually increasing in size and complexity due to the correspondent demand of larger simulations requiring more complicated tasks and higher accuracy. However, as side effects of the Dennard’s scaling approaching its ultimate power limit, the efficiency of software plays also an important role in increasing the overall performance of a computation. Tools to measure application performance in these increasingly complex environments provide insights into the intricate ways in which software and hardware interact. The monitoring of the power consumption in order to save energy is possible through processors interfaces like Intel Running Average Power Limit RAPL. Given the low level of these interfaces, they are often paired with an application-level tool like Performance Application Programming Interface PAPI. Since several problems in many heterogeneous fields can be represented as a complex linear system, an optimized and scalable linear system solver algorithm can decrease significantly the time spent to compute its resolution. One of the most widely used algorithms deployed for the resolution of large simulation is the Gaussian Elimination, which has its most popular implementation for HPC systems in the Scalable Linear Algebra PACKage ScaLAPACK library. However, another relevant algorithm, which is increasing in popularity in the academic field, is the Inhibition Method. This thesis compares the energy consumption of the Inhibition Method and Gaussian Elimination from ScaLAPACK to profile their execution during the resolution of linear systems above the HPC architecture offered by CINECA. Moreover, it also collates the energy and power values for different ranks, nodes, and sockets configurations. The monitoring tools employed to track the energy consumption of these algorithms are PAPI and RAPL, that will be integrated with the parallel execution of the algorithms managed with the Message Passing Interface MPI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente lavoro di tesi, svolto presso i laboratori dell'X-ray Imaging Group del Dipartimento di Fisica e Astronomia dell'Università di Bologna e all'interno del progetto della V Commissione Scientifica Nazionale dell'INFN, COSA (Computing on SoC Architectures), ha come obiettivo il porting e l’analisi di un codice di ricostruzione tomografica su architetture GPU installate su System-On-Chip low-power, al fine di sviluppare un metodo portatile, economico e relativamente veloce. Dall'analisi computazionale sono state sviluppate tre diverse versioni del porting in CUDA C: nella prima ci si è limitati a trasporre la parte più onerosa del calcolo sulla scheda grafica, nella seconda si sfrutta la velocità del calcolo matriciale propria del coprocessore (facendo coincidere ogni pixel con una singola unità di calcolo parallelo), mentre la terza è un miglioramento della precedente versione ottimizzata ulteriormente. La terza versione è quella definitiva scelta perché è la più performante sia dal punto di vista del tempo di ricostruzione della singola slice sia a livello di risparmio energetico. Il porting sviluppato è stato confrontato con altre due parallelizzazioni in OpenMP ed MPI. Si è studiato quindi, sia su cluster HPC, sia su cluster SoC low-power (utilizzando in particolare la scheda quad-core Tegra K1), l’efficienza di ogni paradigma in funzione della velocità di calcolo e dell’energia impiegata. La soluzione da noi proposta prevede la combinazione del porting in OpenMP e di quello in CUDA C. Tre core CPU vengono riservati per l'esecuzione del codice in OpenMP, il quarto per gestire la GPU usando il porting in CUDA C. Questa doppia parallelizzazione ha la massima efficienza in funzione della potenza e dell’energia, mentre il cluster HPC ha la massima efficienza in velocità di calcolo. Il metodo proposto quindi permetterebbe di sfruttare quasi completamente le potenzialità della CPU e GPU con un costo molto contenuto. Una possibile ottimizzazione futura potrebbe prevedere la ricostruzione di due slice contemporaneamente sulla GPU, raddoppiando circa la velocità totale e sfruttando al meglio l’hardware. Questo studio ha dato risultati molto soddisfacenti, infatti, è possibile con solo tre schede TK1 eguagliare e forse a superare, in seguito, la potenza di calcolo di un server tradizionale con il vantaggio aggiunto di avere un sistema portatile, a basso consumo e costo. Questa ricerca si va a porre nell’ambito del computing come uno tra i primi studi effettivi su architetture SoC low-power e sul loro impiego in ambito scientifico, con risultati molto promettenti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dato il recente avvento delle tecnologie NGS, in grado di sequenziare interi genomi umani in tempi e costi ridotti, la capacità di estrarre informazioni dai dati ha un ruolo fondamentale per lo sviluppo della ricerca. Attualmente i problemi computazionali connessi a tali analisi rientrano nel topic dei Big Data, con databases contenenti svariati tipi di dati sperimentali di dimensione sempre più ampia. Questo lavoro di tesi si occupa dell'implementazione e del benchmarking dell'algoritmo QDANet PRO, sviluppato dal gruppo di Biofisica dell'Università di Bologna: il metodo consente l'elaborazione di dati ad alta dimensionalità per l'estrazione di una Signature a bassa dimensionalità di features con un'elevata performance di classificazione, mediante una pipeline d'analisi che comprende algoritmi di dimensionality reduction. Il metodo è generalizzabile anche all'analisi di dati non biologici, ma caratterizzati comunque da un elevato volume e complessità, fattori tipici dei Big Data. L'algoritmo QDANet PRO, valutando la performance di tutte le possibili coppie di features, ne stima il potere discriminante utilizzando un Naive Bayes Quadratic Classifier per poi determinarne il ranking. Una volta selezionata una soglia di performance, viene costruito un network delle features, da cui vengono determinate le componenti connesse. Ogni sottografo viene analizzato separatamente e ridotto mediante metodi basati sulla teoria dei networks fino all'estrapolazione della Signature finale. Il metodo, già precedentemente testato su alcuni datasets disponibili al gruppo di ricerca con riscontri positivi, è stato messo a confronto con i risultati ottenuti su databases omici disponibili in letteratura, i quali costituiscono un riferimento nel settore, e con algoritmi già esistenti che svolgono simili compiti. Per la riduzione dei tempi computazionali l'algoritmo è stato implementato in linguaggio C++ su HPC, con la parallelizzazione mediante librerie OpenMP delle parti più critiche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fino a 15 anni fa, era possibile aumentare il numero di transistor su un singolo chip e contemporaneamente la sua frequenza di clock mantenendo la densità di potenza costante. Tuttavia dal 2004 non è più possibile mantenere invariata la potenza dissipata per unità d’area a causa di limitazioni fisiche. Al fine di aumentare le performance dei processori e di impedire una diminuzione delle frequenze di clock, i processori moderni integrano on-die dei Power Controller Subsystems (PCS) come risorsa hardware dedicata che implementa complesse strategie di gestione di temperatura e potenza. In questo progetto di tesi viene progettata l'architettura dell'interfaccia di comunicazione di ControlPULP, un PCS basato su ISA RISC-V, per la connessione verso un processore HPC. Tale interfaccia di comunicaione integra il supporto hardware per lo scambio di messaggi secondo la specifica SCMI. L'interfaccia sviluppata viene successivamente validata attraverso simulazione ed emulazione su supporto hardware FPGA. Tale supporto hardware viene inoltre utilizzato per la caratterizzazione dell'utilizzo di risorse dell'architettura progettata. Oltre allo sviluppo dell'interfaccia hardware viene sviluppato e caratterizzato un firmware per la decodifica dei messaggi SCMI conforme ai requisiti di esecuzione su un sistema real-time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gli sforzi di ricerca relativi all'High Performance Computing, nel corso degli anni, hanno prodotto risultati importanti inerenti all'incremento delle prestazioni sia in termini di numero di operazioni effettuate per periodo temporale, sia introducendo o migliorando algoritmi paralleli presenti in letteratura. Tali traguardi hanno comportato cambiamenti alla struttura interna delle macchine; si è assistito infatti ad un'evoluzione delle architetture dei processori utilizzati e all'impiego di GPU come risorse di calcolo aggiuntive. La conseguenza di un continuo incremento di prestazioni è quella di dover far fronte ad un grosso dispendio energetico, in quanto le macchine impiegate nell'HPC sono ideate per effettuare un'intensa attività di calcolo in un periodo di tempo molto prolungato; l'energia necessaria per alimentare ciascun nodo e dissipare il calore generato comporta costi elevati. Tra le varie soluzioni proposte per limitare il consumo di energia, quella che ha riscosso maggior interesse, sia a livello di studio che di mercato, è stata l'integrazione di CPU di tipologia RISC (Reduced Instruction Set Computer), in quanto capaci di ottenere prestazioni soddisfacenti con un impiego energetico inferiore rispetto alle CPU CISC (Complex Instruction Set Computer). In questa tesi è presentata l'analisi delle prestazioni di Monte Cimone, un cluster composto da 8 nodi di calcolo basati su architettura RISC-V e distribuiti in 4 piattaforme (\emph{blade}) dual-board. Verranno eseguiti dei benchmark che ci permetteranno di valutare: le prestazioni dello scambio di dati a lunga e corta distanza; le prestazioni nella risoluzione di problemi che presentano un principio di località spaziale ridotto; le prestazioni nella risoluzione di problemi su grafi e, nello specifico, ricerca in ampiezza e cammini minimi da sorgente singola.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nel presente elaborato si analizzeranno le prestazioni del linguaggio di programmazione parallela Chapel sul kernel Integer Sort di NAS Parallel Benchmarks. Questo algoritmo, a livello pratico, è utilizzato per studi o applicazioni sui metodi particellari. Saranno introdotti i concetti fondamentali di programmazione parallela e successivamente illustrate le principali caratteristiche di MPI e Chapel. Verranno poi approfonditi Integer Sort e i rispettivi dettagli implementativi, concludendo con un'analisi di prestazioni dei due linguaggi sul kernel preso in esame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'obiettivo di questo lavoro di tesi è quello di simulare il comportamento di un'aorta addominale con e senza aneurismatica, considerando sia la fluidodinamica del flusso sanguigno, sia lo spostamento elastico meccanico dell'aorta, quindi come il primo fattore influisca sul secondo e viceversa. Questo elaborato si propone pertanto di investigare gli strumenti che permettano di intervenire ed evitare situazioni degenerative in ambito cardiovascolare. Partendo dal caso di aneurisma dell'aorta addominale (AAA) e servendosi di una serie di strumenti computazionali è possibile compiere un confronto tra quadri clinici di diversi pazienti per favorire e facilitare il lavoro di medici e chirurghi, stabilendo una rapida correlazione tra la cattura di immagini in tempo reale dei pazienti attraverso TAC (Tomografia Assiale Computerizzata) e i parametri d’interesse nella formazione di aneurismi. Si fornisce in questo modo al professionista che li osserva un’immediata ed efficiente comprensione del quadro clinico sulla base del quale potrà decidere se e come intervenire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi discuteremo come è possibile effettuare la traduzione di un software parallelo scritto in linguaggio CUDA ad uno in linguaggio OpenCL. Tratteremo le tecnologie utilizzate per lo sviluppo di un simulatore cardiaco parallelo e discuteremo in particolar modo come derivare da queste una versione che ne permetta l’esecuzione su schede video e processori arbitrari. Questa versione verrà messa poi a confronto con quelle già esistenti, per analizzarne prestazioni ed eventuali cambiamenti strutturali del codice. Quanto affermato sopra è stato possibile in gran parte grazie ad un wrapper chiamato SimpleCL pensato per rendere la programmazione OpenCL simile a quella in ambiente CUDA. OpenCL permette di operare con le unità di calcolo in maniera molto astratta, ricordando vagamente i concetti di astrazione di memoria e processori della controparte NVIDIA. Ragionevolmente SimpleCL fornisce solamente una interfaccia che ricorda chiamate CUDA, mantenendo il flusso sottostante fedele a quello che si aspetterebbe OpenCL.