9 resultados para EXCITED-STATE PROCESSES

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic Light-Emitting Diodes (OLEDs) technology has matured over recent years, reaching the commercialization level and being used in various applications. The required efficiency can be achieved by transforming triplet excitons into singlet states via Reverse InterSystem Crossing (RISC), which a general mechanism called thermally activated delayed fluorescence (TADF). Two prototypical molecules in the field, 2CzBN and 4CzBN, Carbazole Benzonitrile (donor-acceptor) derivatives, possess similar energy gap between singlet and triplet (∆EST, a key parameter in the RISC rate), but different TADF performance. In this sense, other parameter must be considered to explain these different behaviors. In this work, we theoretically investigate 2CzBN and 4CzBN and address the problem of how flexible donor-acceptor (D-A) or donor-acceptor-donor (D-A-D) molecular architectures affect the nature of excited state, and the oscillator strength. Furthermore, we analyze the RISC rates as a function of the conformation of the carbazole side groups, considering the S0, S1, T1 and T2 states. The oscillator strength of 4CzBN is higher than of 2CzBN, which, in turn, is almost vanishing, resulting in only 4CzBN being a TADF active molecule. We also note the presence of a second triplet state T2 lower in energy than S1, and that the reorganization energies, associated to the RISC processes involving T1 and T2, are both important factor in differentiating the rates in 2CzBN and 4CzBN. However, the 4CzBN RISC rate from T2 to S1 is surprisingly high with respect to the one from T1 to S1, although, according to EL-Sayed rules, since T2 (CT/LE) is more similar to S1 (CT) than in 2CzBN (LE, CT), this transition should be less favored. These insights are important to understand the photophysics of the TADF process and to design novel TADF emitters based on the benzo-carbazole architecture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We obtain the exact time-dependent Kohn-Sham potentials Vks for 1D Hubbard chains, driven by a d.c. external field, using the time-dependent electron density and current density obtained from exact many-body time-evolution. The exact Vxc is compared to the adiabatically-exact Vad-xc and the “instantaneous ground state” Vigs-xc. The effectiveness of these two approximations is analyzed. Approximations for the exchange-correlation potential Vxc and its gradient, based on the local density and on the local current density, are also considered and both physical quantities are observed to be far outside the reach of any possible local approximation. Insight into the respective roles of ground-state and excited-state correlation in the time-dependent system, as reflected in the potentials, is provided by the pair correlation function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we developed three copper-containing systems. Copper shows intriguing abilities in photocatalysis, however, one of the major limitations of many copper complexes is that photochemical properties might be quenched in solution caused by π-interactions between solvent and solute, due to Jahn-Teller distortion in the excited state. As such, we herein seek to synthesise copper heteroleptic complexes that will subsequently be nanoprecipitated with a polymer. This will allow the polymer to encase the complex and prevent the solvent-induced quenching. Subsequently, the preparation of blends of polymer with the aforementioned copper complexes, at different weight ratios is sought. The preparation of the blend is particularly interesting as the catalytic properties are anticipated to be inferior on account of the low surface area. However, owing to the polymer matrix better, mechanical properties are anticipated. The blends can combine the mechanical properties of the polymer and the luminescence of the complex, with the advantage that the polymer matrix can also prevent quenching from oxygen. As final task, we developed a copper-containing monomer. The synthesis of a monomer that contains copper and can be excited under ultraviolet (UV) light is particularly interesting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al fine di migliorare le tecniche di coltura cellulare in vitro, sistemi a bioreattore sono sempre maggiormente utilizzati, e.g. ingegnerizzazione del tessuto osseo. Spinner Flasks, bioreattori rotanti e sistemi a perfusione di flusso sono oggi utilizzati e ogni sistema ha vantaggi e svantaggi. Questo lavoro descrive lo sviluppo di un semplice bioreattore a perfusione ed i risultati della metodologia di valutazione impiegata, basata su analisi μCT a raggi-X e tecniche di modellizzazione 3D. Un semplice bioreattore con generatore di flusso ad elica è stato progettato e costruito con l'obiettivo di migliorare la differenziazione di cellule staminali mesenchimali, provenienti da embrioni umani (HES-MP); le cellule sono state seminate su scaffold porosi di titanio che garantiscono una migliore adesione della matrice mineralizzata. Attraverso un microcontrollore e un'interfaccia grafica, il bioreattore genera tre tipi di flusso: in avanti (senso orario), indietro (senso antiorario) e una modalità a impulsi (avanti e indietro). Un semplice modello è stato realizzato per stimare la pressione generata dal flusso negli scaffolds (3•10-2 Pa). Sono stati comparati tre scaffolds in coltura statica e tre all’interno del bioreattore. Questi sono stati incubati per 21 giorni, fissati in paraformaldehyde (4% w/v) e sono stati soggetti ad acquisizione attraverso μCT a raggi-X. Le immagini ottenute sono state poi elaborate mediante un software di imaging 3D; è stato effettuato un sezionamento “virtuale” degli scaffolds, al fine di ottenere la distribuzione del gradiente dei valori di grigio di campioni estratti dalla superficie e dall’interno di essi. Tale distribuzione serve per distinguere le varie componenti presenti nelle immagini; in questo caso gli scaffolds dall’ipotetica matrice cellulare. I risultati mostrano che sia sulla superficie che internamente agli scaffolds, mantenuti nel bioreattore, è presente una maggiore densità dei gradienti dei valori di grigio ciò suggerisce un migliore deposito della matrice mineralizzata. Gli insegnamenti provenienti dalla realizzazione di questo bioreattore saranno utilizzati per progettare una nuova versione che renderà possibile l’analisi di più di 20 scaffolds contemporaneamente, permettendo un’ulteriore analisi della qualità della differenziazione usando metodologie molecolari ed istochimiche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis work proposes a new physical equivalent circuit model for a recently proposed semiconductor transistor, a 2-drain MSET (Multiple State Electrostatically Formed Nanowire Transistor). It presents a new software-based experimental setup that has been developed for carrying out numerical simulations on the device and on equivalent circuits. As of 2015, we have already approached the scaling limits of the ubiquitous CMOS technology that has been in the forefront of mainstream technological advancement, so many researchers are exploring different ideas in the realm of electrical devices for logical applications, among them MSET transistors. The idea that underlies MSETs is that a single multiple-terminal device could replace many traditional transistors. In particular a 2-drain MSET is akin to a silicon multiplexer, consisting in a Junction FET with independent gates, but with a split drain, so that a voltage-controlled conductive path can connect either of the drains to the source. The first chapter of this work presents the theory of classical JFETs and its common equivalent circuit models. The physical model and its derivation are presented, the current state of equivalent circuits for the JFET is discussed. A physical model of a JFET with two independent gates has been developed, deriving it from previous results, and is presented at the end of the chapter. A review of the characteristics of MSET device is shown in chapter 2. In this chapter, the proposed physical model and its formulation are presented. A listing for the SPICE model was attached as an appendix at the end of this document. Chapter 3 concerns the results of the numerical simulations on the device. At first the research for a suitable geometry is discussed and then comparisons between results from finite-elements simulations and equivalent circuit runs are made. Where points of challenging divergence were found between the two numerical results, the relevant physical processes are discussed. In the fourth chapter the experimental setup is discussed. The GUI-based environments that allow to explore the four-dimensional solution space and to analyze the physical variables inside the device are described. It is shown how this software project has been structured to overcome technical challenges in structuring multiple simulations in sequence, and to provide for a flexible platform for future research in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology of Organic Light-Emitting Diodes has reached such a high level of reliability that it can be used in various applications. The required light emission efficiency can be achieved by transforming the triplet excitons into singlet states through Reverse InterSystem Crossing (RISC), which is the main process of a general mechanism called thermally activated delayed fluorescence (TADF). In this thesis, we theoretically analyzed two carbazole-benzonitrile (donor-acceptor) derivatives, 2,5-di(9H-carbazol-9-yl)benzonitrile (p-2CzBN) and 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN), and addressed the problem of how donor-acceptor (D-A) or donor-acceptor-donor (D-A-D) flexible molecular architectures influence the nature of the excited states and the emission intensity. Furthermore, we analyzed the RISC rates as a function of the conformation of the carbazole lateral groups, considering the first electronic states, S0, S1, T1 and T2, involved in TADF process. The two prototype molecules, p-2CzBN and 5CzBN, have a similar energy gap between the first singlet and triplet states (∆EST, a key parameter in the RISC rate), but different TADF performances. Therefore, other parameters must be considered to explain their different behavior. The oscillator strength of p-2CzBN, never tested as emitter in OLEDs, is similar to that of 5CzBN, which is an active TADF molecule. We also note that the presence of a second T2 triplet state, lower in energy than S1 only in 5CzBN, and the reorganization energies, associated with RISC processes involving T1 and T2, are important factors in differentiating the rates in p-2CzBN and 5CzBN. For p-2CzBN, the RISC rate from T2 to S1 is surprisingly higher than that from T1 to S1, in disagreement with El-Sayed rules, due to a large reorganization energy associated to the T1 to S1, process; while the contrary occurs for 5CzBN. These insights are important for designing new TADF emitters based on the benzo-carbazole architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion on networks is a convenient framework to describe transport systems of different nature (from biological transport systems to urban mobility). The mathematical models are based on master equations that describe the diffusion processes by means of the weighted Laplacian matrix that connects the nodes. The link weight represent the coupling strength between the nodes. In this thesis we cope with the problem of localizing a single-edge failure that occurs in the network. An edge failure is meant to be as a sudden decrease of its transport capacities. An incomplete observation of the dynamical state of the network is available. An optimal clustering procedure based on the correlation properties among the node states is proposed. The network dimensionality is then reduced introducing representative nodes for each cluster, whose dynamical state is observed. We check the efficiency of the failure localization for our clustering method in comparison with more traditional techniques, using different graph configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.