364 resultados para teorema di rappresentazione di Riesz spazio duale


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi tratta della formula di Eulero per i poliedri e del teorema di rigididi Cauchy. La tesi è conclusa da brevi considerazioni didattiche su di essi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problema di Cauchy, teorema di dipendenza continua dai dati iniziali, teorema di dipendenza regolare dai dati e dai parametri.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una teoria degli insiemi alternativa alla più nota e diffusa teoria di Zermelo-Fraenkel con l'Assioma di Scelta, ZFC, è quella proposta da W. V. O. Quine nel 1937, poi riveduta e corretta da R. Jensen nel 1969 e rinominata NFU (New foundations with Urelementen). Anche questa teoria è basata sui concetti primitivi di insieme e appartenenza, tuttavia differisce notevolmente da quella usuale perché si ammettono solo formule stratificate, cioè formule in cui è rispettata una gerarchizzazione elemento-insieme che considera priva di significato certe scritture. L'unico inconveniente di NFU è dovuto alle conseguenze della stratificazione. I pregi invece sono notevoli: ad esempio un uso molto naturale delle relazioni come l'inclusione, o la possibilità di considerare insiemi anche collezioni di oggetti troppo "numerose" (come l'insieme universale) senza il rischio di cadere in contraddizione. NFU inoltre risulta essere più potente di ZFC, in quanto, grazie al Teorema di Solovay, è possibile ritrovare in essa un modello con cardinali inaccessibili di ZFC ed è ammessa la costruzione di altri modelli con cardinali inaccessibili della teoria classica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo del presente lavoro è di illustrare alcuni temi di geometria simplettica, i cui risultati possono essere applicati con successo al problema dell’integrazione dei sistemi dinamici. Nella prima parte si formalizza il teorema di Noether generalizzato, introducendo il concetto dell’applicazione momento, e si dà una descrizione dettagliata del processo di riduzione simplettica, che consiste nello sfruttare le simmetrie di un sistema fisico, ovvero l’invarianza sotto l’azione di un gruppo dato, al fine di eliminarne i gradi di libertà ridondanti. Nella seconda parte, in quanto risultato notevole reso possibile dalla teoria suesposta, si fornisce una panoramica dei sistemi di tipo Calogero-Moser: sistemi totalmente integrabili che possono essere introdotti e risolti usando la tecnica della riduzione simplettica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si descrive il gruppo dei quaternioni come gruppo non abeliano avente tutti i sottogruppi normali. In particolare si dimostra il teorema di Dedekind che determina la struttura dei gruppi aventi tutti i sottogruppi normali. Si dà poi un polinomio a coefficienti razionali il cui gruppo di Galois coincide con il gruppo dei quaternioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi presenta alcuni aspetti dell'analisi convessa, in spazi vettoriali topologici, indirizzati allo studio di problemi generali di minimizzazione. Dai risultati geometrici dei teoremi di Hahn-Banach, attraverso la descrizione di proprietà fondamentali delle funzioni convesse e del sottodifferenziale, viene descritta la dualità di Fenchel-Moreau, e poi applicata a problemi generali di Ottimizzazione convessa, sotto forma prima di problema primale-duale, e poi come rapporto tra i punti di sella della Lagrangiana e le soluzioni della funzione da minimizzare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo elaborato si propone di analizzare il collegamento tra olomorfia e armonicità. La prima parte della tesi tratta le funzioni olomorfe, mentre la seconda parte tratta le funzioni armoniche. Per quanto riguarda la seconda parte, inizialmente ci limiteremo a studiare le funzioni armoniche in R^2, sottolineando il legame tra queste e le funzioni olomorfe. Considereremo poi il caso generale, ovvero estenderemo la nozione di funzione armonica ad R^N e osserveremo che molte delle proprietà viste per le funzioni olomorfe valgono anche per le funzioni armoniche. In particolare, vedremo che le formule di media per le funzioni armoniche svolgono un ruolo analogo alla formula integrale di Cauchy per le funzioni olomorfe. Vedremo anche che il Teorema di Liouville per le funzioni armoniche è l’analogo del Teorema di Liouville per le funzioni intere (funzioni olomorfe su tutto C) e, infine, osserveremo che il Principio del massimo forte non è altro che il trasferimento alle funzioni armoniche del Principio del massimo modulo visto nella teoria delle funzioni olomorfe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi ha come obiettivo principale quello di calcolare il gruppo fondamentale di alcuni spazi topologici noti, in particolare alcuni spazi di orbite rispetto ad azioni di gruppi. Il gruppo fondamentale è un gruppo che può essere associato ad ogni spazio topologico X connesso per archi e che per le sue proprietà può fornire informazioni sulla topologia di X; è uno dei primi concetti della topologia algebrica. La nozione di gruppo fondamentale è strettamente legata alla nozione di rivestimento, particolare funzione tale che ogni punto del codominio possiede un intorno aperto la cui retroimmagine è unione disgiunta di aperti del dominio ognuno dei quli omeomorfi all’intorno di partenza. Si prendono poi in considerazione il caso di spazio di orbite, cioè di uno spazio quoziente di uno spazio topologico X rispetto all’azione di un gruppo. Se tale azione è propriamente discontinua allora la proiezione canonica è un rivestimento. In questa tesi utilizzeremo i risultati che legano i gruppi fondamentali di X e X/G per calcolare il gruppo fondamentale di alcuni spazi notevoli, quali la circonferenza, il toro, lo spazio proiettivo e il nastro di Moebius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi, che si colloca nell'ambito della topologia algebrica, si affronta l'approccio allo studio delle 3-varietà mediante il concetto di rivestimento. In particolare si studiano i rivestimenti ramificati il cui l'insieme di ramificazione è un link. Il tema centrale della tesi è il teorema di Hilden-Montesinos, che in particolare tratta di rivestimenti ramificati di ordine 3 semplici. Per questo si affronta il concetto di monodromia e di gruppo di un link. L'ultima parte descrive il problema di trovare equivalenze tra diagrammi colorati che rappresentano 3-varietà, mostrando infine una possibile soluzione trovata da Riccardo Piergallini.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo di questo elaborato è studiare la risolubilità per radicali di un polinomio a coefficienti in un campo di caratteristica zero attraverso lo studio del gruppo di Galois del suo campo di spezzamento. Dopo aver analizzato alcuni risultati su gruppi risolubili e gruppi semplici, vengono studiate le estensioni radicali e risolubili. Viene inoltre dimostrato su un campo K di caratteristica zero il Teorema di Galois, che caratterizza i polinomi risolubili per radicali f a coefficienti in K attraverso la risolubilità del gruppo di Galois G(L/K), dove L è il campo di spezzamento di f. La tesi contiene anche un'esposizione sintetica del metodo introdotto da Lagrange per la risoluzione di equazioni polinomiali di cui si conosca il gruppo di Galois.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi affronta la classificazione delle superfici compatte e prive di bordo. Successivamente, si vede un'applicazione del teorema di classificazione alle curve algebriche proiettive complesse, non singolari e irriducibili.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si propone di verificare l'esistenza di coordinate isoterme su una superficie. Le coordinate isoterme danno localmente una mappa conforme da una varietà riemanniana bidimensionale al piano Euclideo. Se la superficie è orientabile, allora si può dare un atlante di carte isoterme, cioè le cui coordinate associate siano isoterme. Queste coordinate esistono a patto che vengano soddisfatte certe condizioni. Il risultato nelle classi di Holder è dovuto a Korn e Lichtensten. Chern ha notevolmente semplificato la loro dimostrazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo di questo elaborato è affrontare lo studio di luoghi geometrici piani partendo dagli esempi più semplici che gli studenti incontrano nel loro percorso scolastico, per poi passare a studiare alcune curve celebri che sono definite come luoghi geometrici. Le curve nell'elaborato vengono disegnate con l'ausilio di Geogebra, con il quale sono state preparate delle animazioni da mostrare agli studenti. Di alcuni luoghi si forniscono dapprima le equazioni parametriche e successivamente, attraverso il teorema di eliminazione e il software Singular, viene ricavata l'equazione cartesiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo della tesi è di stimare le prestazioni del rivelatore ALICE nella rivelazione del barione Lambda_c nelle collisioni PbPb usando un approccio innovativo per l'identificazione delle particelle. L'idea principale del nuovo approccio è di sostituire l'usuale selezione della particella, basata su tagli applicati ai segnali del rivelatore, con una selezione che usi le probabilità derivate dal teorema di Bayes (per questo è chiamato "pesato Bayesiano"). Per stabilire quale metodo è il più efficiente , viene presentato un confronto con altri approcci standard utilizzati in ALICE. Per fare ciò è stato implementato un software di simulazione Monte Carlo "fast", settato con le abbondanze di particelle che ci si aspetta nel nuovo regime energetico di LHC e con le prestazioni osservate del rivelatore. E' stata quindi ricavata una stima realistica della produzione di Lambda_c, combinando i risultati noti da esperimenti precedenti e ciò è stato usato per stimare la significatività secondo la statistica al RUN2 e RUN3 dell'LHC. Verranno descritti la fisica di ALICE, tra cui modello standard, cromodinamica quantistica e quark gluon plasma. Poi si passerà ad analizzare alcuni risultati sperimentali recenti (RHIC e LHC). Verrà descritto il funzionamento di ALICE e delle sue componenti e infine si passerà all'analisi dei risultati ottenuti. Questi ultimi hanno mostrato che il metodo risulta avere una efficienza superiore a quella degli usuali approcci in ALICE e che, conseguentemente, per quantificare ancora meglio le prestazioni del nuovo metodo si dovrebbe eseguire una simulazione "full", così da verificare i risultati ottenuti in uno scenario totalmente realistico.