125 resultados para Teorema de Gauss Bonnet
Resumo:
Lo scopo della tesi è descrivere i buchi neri di Kerr. Dopo aver introdotto tutti gli strumenti matematici necessari quali tensori, vettori di Killing e geodetiche, enunceremo la metrica di Kerr, il teorema no-hair e il frame-dragging. In seguito, a partire dalla metrica di Kerr, calcoleremo e descriveremo le ergosfere, gli orizzonti degli eventi e il moto dei fotoni nel piano equatoriale.
Resumo:
Problema di Cauchy, teorema di dipendenza continua dai dati iniziali, teorema di dipendenza regolare dai dati e dai parametri.
Resumo:
Nuova frontiera per la procedura di test tailoring è la sintesi di profili vibratori il più reali possibili, nei quali venga tenuto conto della possibile presenza di eventi transitori e della non scontata ripetibilità delle vibrazioni nel tempo. Negli ultimi anni si è rivolto un crescente interesse nel "controllo del Kurtosis", finalizzato alla realizzazione di profili vibratori aventi distribuzione di probabilità non-Gaussiana. Durante l’indagine sperimentale oggetto di questa trattazione si sono portati a rottura per fatica alcuni componenti sottoposti, in generale, a tre differenti tipi di sollecitazione: stazionaria Gaussiana, stazionaria non-Gaussiana e non stazionaria non-Gaussiana. Il componente testato è costituito da un provino cilindrico montato a sbalzo e dotato di una massa concentrata all’estremità libera e di una gola vicina all’incastro, nella quale avviene la rottura per fatica. Durante l’indagine sperimentale si è monitorata la risposta in termini di accelerazione all’estremità libera del provino e di spostamento relativo a monte e a valle della gola, essendo quest’ultimo ritenuto proporzionale alle tensioni che portano a rottura il componente. Per ogni prova sono stati confrontati il Kurtosis e altri parametri statistici dell’eccitazione e della risposta. I risultati ottenuti mostrano che solo le sollecitazioni non stazionarie non-Gaussiane forniscono una risposta con distribuzione di probabilità non-Gaussiana. Per gli altri profili vale invece il Teorema del Limite Centrale. Tale per cui i picchi presenti nell'eccitazione non vengono trasmessi alla risposta. Sono stati inoltre monitorati i tempi di rottura di ogni componente. L’indagine sperimentale è stata effettuata con l'obiettivo di indagare sulle caratteristiche che deve possedere l’eccitazione affinchè sia significativa per le strategie alla base del "controllo del Kurtosis".
Resumo:
La tomosintesi digitale computerizzata è una particolare tecnica che permette di ricostruire una rappresentazione 3D di un oggetto, con un numero finito di proiezioni su un range angolare limitato, sfruttando le convenzionali attrezzature digitali a raggi X. In questa tesi è stato descritto un modello matematico per la ricostruzione dell’immagine della mammella nella tomosintesi digitale polienergetica che tiene conto della varietà di materiali che compongono l’oggetto e della natura polienergetica del fascio di raggi X. Utilizzando questo modello polienergetico-multimateriale, la ricostruzione dell’immagine di tomosintesi è stata ricondotta alla formulazione di un problema dei minimi quadrati non lineare su larga scala e risolverlo ha permesso la ricostruzione delle percentuali dei materiali del volume assegnato. Nelle sperimentazioni sono stati implementati il metodo del gradiente, il metodo di Gauss-Newton ed il metodo di Gauss-Newton CGLS. E' stato anche utilizzato l’algoritmo trust region reflective implementato nella funzione lsqnonlin di MATLAB. Il problema della ricostruzione dell'immagine di tomosintesi è stato risolto utilizzando questi quattro metodi ed i risultati ottenuti sono stati confrontati tra di loro.
Resumo:
Questo elaborato si propone di dare una panoramica generale delle basi della Dinamica dei Fluidi e della sua importanza nel contesto astrofisico; è strutturato in modo da fornire le nozioni fondamentali necessarie in tali campi e le essenziali informazioni sul formalismo correntemente utilizzato, per poi concludere con l'analisi del fenomeno dell'instabilità di Jeans.
Resumo:
Una teoria degli insiemi alternativa alla più nota e diffusa teoria di Zermelo-Fraenkel con l'Assioma di Scelta, ZFC, è quella proposta da W. V. O. Quine nel 1937, poi riveduta e corretta da R. Jensen nel 1969 e rinominata NFU (New foundations with Urelementen). Anche questa teoria è basata sui concetti primitivi di insieme e appartenenza, tuttavia differisce notevolmente da quella usuale perché si ammettono solo formule stratificate, cioè formule in cui è rispettata una gerarchizzazione elemento-insieme che considera priva di significato certe scritture. L'unico inconveniente di NFU è dovuto alle conseguenze della stratificazione. I pregi invece sono notevoli: ad esempio un uso molto naturale delle relazioni come l'inclusione, o la possibilità di considerare insiemi anche collezioni di oggetti troppo "numerose" (come l'insieme universale) senza il rischio di cadere in contraddizione. NFU inoltre risulta essere più potente di ZFC, in quanto, grazie al Teorema di Solovay, è possibile ritrovare in essa un modello con cardinali inaccessibili di ZFC ed è ammessa la costruzione di altri modelli con cardinali inaccessibili della teoria classica.
Resumo:
Lo scopo del presente lavoro è di illustrare alcuni temi di geometria simplettica, i cui risultati possono essere applicati con successo al problema dell’integrazione dei sistemi dinamici. Nella prima parte si formalizza il teorema di Noether generalizzato, introducendo il concetto dell’applicazione momento, e si dà una descrizione dettagliata del processo di riduzione simplettica, che consiste nello sfruttare le simmetrie di un sistema fisico, ovvero l’invarianza sotto l’azione di un gruppo dato, al fine di eliminarne i gradi di libertà ridondanti. Nella seconda parte, in quanto risultato notevole reso possibile dalla teoria suesposta, si fornisce una panoramica dei sistemi di tipo Calogero-Moser: sistemi totalmente integrabili che possono essere introdotti e risolti usando la tecnica della riduzione simplettica.
Resumo:
In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.
Resumo:
Scopo di questo elaborato è la trattazione del momento di inerzia di un sistema meccanico rispetto ad una retta, con particolare attenzione alla struttura geometrica associata a questa nozione, ovvero all’ellissoide di inerzia. Si parte dalla definizione delle grandezze meccaniche fondamentali, passando per le equazioni cardinali della dinamica, arrivando a dimostrare il teorema di König. Viene poi studiato il momento di inerzia ed evidenziato il suo ruolo importante per la determinazione del momento angolare e dell’energia cinetica: in particolare è emersa la centralità dell’ellissoide d’inerzia. Si conclude con la dimostrazione del teorema di Huyghens e alcuni esempi espliciti di calcolo dell’ellissoide di inerzia.
Resumo:
Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.
Resumo:
In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.
Resumo:
Si studiano le funzioni assolutamente continue (proprietà, caratterizzazioni ed esempi) e le funzioni a variazione limitata (prima di queste, qualche breve richiamo sulle funzioni monotone e sulla funzione di Vitali).
Resumo:
In questa tesi si descrive il gruppo dei quaternioni come gruppo non abeliano avente tutti i sottogruppi normali. In particolare si dimostra il teorema di Dedekind che determina la struttura dei gruppi aventi tutti i sottogruppi normali. Si dà poi un polinomio a coefficienti razionali il cui gruppo di Galois coincide con il gruppo dei quaternioni.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
L’assioma di scelta ha una preistoria, che riguarda l’uso inconsapevole e i primi barlumi di consapevolezza che si trattasse di un nuovo principio di ragionamento. Lo scopo della prima parte di questa tesi è quello di ricostruire questo percorso di usi più o meno impliciti e più o meno necessari che rivelarono la consapevolezza non solo del fatto che fosse indispensabile introdurre un nuovo principio, ma anche che il modo di “fare matematica” stava cambiando. Nei capitoli 2 e 3, si parla dei moltissimi matematici che, senza rendersene conto, utilizzarono l’assioma di scelta nei loro lavori; tra questi anche Cantor che appellandosi alla banalità delle dimostrazioni, evitava spesso di chiarire le situazioni in cui era richiesta questa particolare assunzione. Il capitolo 2 è dedicato ad un caso notevole e rilevante dell’uso inconsapevole dell’Assioma, di cui per la prima volta si accorse R. Bettazzi nel 1892: l’equivalenza delle due nozioni di finito, quella di Dedekind e quella “naturale”. La prima parte di questa tesi si conclude con la dimostrazione di Zermelo del teorema del buon ordinamento e con un’analisi della sua assiomatizzazione della teoria degli insiemi. La seconda parte si apre con il capitolo 5 in cui si parla dell’intenso dibattito sulla dimostrazione di Zermelo e sulla possibilità o meno di accettare il suo Assioma, che coinvolse i matematici di tutta Europa. In quel contesto l’assioma di scelta trovò per lo più oppositori che si appellavano ad alcune sue conseguenze apparentemente paradossali. Queste conseguenze, insieme alle molte importanti, sono analizzate nel capitolo 6. Nell’ultimo capitolo vengono riportate alcune tra le molte equivalenze dell’assioma di scelta con altri enunciati importanti come quello della tricotomia dei cardinali. Ci si sofferma poi sulle conseguenze dell’Assioma e sulla sua influenza sulla matematica del Novecento, quindi sulle formulazioni alternative o su quelle più deboli come l’assioma delle scelte dipendenti e quello delle scelte numerabili. Si conclude con gli importanti risultati, dovuti a Godel e a Cohen sull’indipendenza e sulla consistenza dell’assioma di scelta nell’ambito della teoria degli insiemi di Zermelo-Fraenkel.