807 resultados para metastasi blastiche,proprietà meccaniche,nanoindentazione
Resumo:
I sistemi di trasporto dell’energia elettrica per lunghe distanze possono dimostrarsi convenienti attraverso l’utilizzo di cavi in corrente continua ad alta tensione (HVDC). Essi possono essere installati seguendo la classica configurazione aerea, oppure interrati, dove le difficili condizioni ambientali, possono portare alla degradazione dei materiali. I materiali polimerici che costituiscono l’isolamento del cavo sono soggetti ad invecchiamento, diventando sempre più fragili e poco affidabili sia a seguito delle condizioni ambientali che dall’applicazione dell’alta tensione, che comporta un forte campo elettrico fra la superficie del conduttore e l’isolante esterno. Per determinare l’integrità e le caratteristiche dei materiali polimerici si utilizzano tecniche diagnostiche. Molte tecniche prevedono però la distruzione del materiale, quindi se ne cercano altre non distruttive. Questa tesi studia gli effetti dell’aggiunta di un additivo alla matrice polimerica del materiale isolante, utilizzando la tecnica di spettroscopia dielettrica, la misura di conducibilità e il metodo dell’impulso elettroacustico. I provini testati sono costituiti da una matrice di polipropilene e polipropilene additivato con nitruro di boro, testati alle temperature di 20, 40, 70°C. In particolare, il primo capitolo introduce i sistemi HVDC, per poi presentare le caratteristiche e le proprietà dei materiali nanodielettrici. Nella terza parte si descrive il set sperimentale utilizzato nelle prove condotte. Nei capitoli 4 e 5 sono riportati i risultati ottenuti e la loro discussione.
Resumo:
La tesi in oggetto ha lo scopo di determinare l’effetto della sabbiatura sul comportamento a fatica della lega AlSi10Mg prodotta mediante Laser Powder Bed Fusion e trattata termicamente. I parametri di processo e di trattamento termico (T5 e T6) sono stati precedentemente ottimizzati. Al fine di determinare l’effetto della sabbiatura su topografia superficiale e microstruttura dei campioni, si sono condotte molteplici analisi avvalendosi di strumenti quali profilometria, microscopia ottica ed in scansione, analisi di tensioni residue con diffrazione a raggi X e prove di durezza. Attraverso prove di fatica per flessione rotante, eseguite secondo il metodo Stair-Case per la determinazione della resistenza a fatica, e successiva caratterizzazione delle superfici di frattura si vuole correlare il difetto killer, ossia quello responsabile del cedimento per fatica, alle caratteristiche morfologiche e microstrutturali. Il difetto killer viene caratterizzato in termini di dimensione e distanza dalla superficie e per mostrare la relazione fra la dimensione del difetto killer e la resistenza a fatica si adotta il diagramma di Kitagawa-Takahashi con modellazione di Murakami ed EL Haddad. Si è evidenziato che tutti i difetti killer sono riconducibili a lack-of-fusion con dimensione superiore ai 100 μm ad una profondità compresa fra i 150 e i 200 μm, indipendentemente dal trattamento termico o meccanico applicato. In termini di fatica si osserva che il trattamento T6 conferisce al materiale migliori proprietà rispetto a quello T5. Il processo di sabbiatura, confrontato con quello di lucidatura superficiale, ha portato a miglioramenti in termini di durezza e tensioni residue di compressione, ma si è rivelato quasi ininfluente sulla resistenza a fatica. Sulla base di quanto sopra, si conferma la possibilità di applicazione della sabbiatura in ambito industriale a componenti meccanici, anche in sostituzione della lucidatura, ottenendo un beneficio anche economico.
Resumo:
L'intelligenza artificiale (IA) trova nei giochi un campo di applicazione molto vasto, nel quale poter sperimentare svariate tecniche e proporre nuove stimolanti sfide che spingano i partecipanti ad esplorare nuovi orizzonti nell'ambito delle applicazioni di IA. La Keke AI Competition rappresenta una di queste sfide, introducendo una gara tra agenti intelligenti per il gioco Baba is You, puzzle game in cui i giocatori possono creare regole che influenzano le meccaniche del gioco in maniera temporanea o permanente. La natura di queste regole dinamiche crea una sfida per l'intelligenza artificiale, che deve adattarsi ad una varietà di combinazioni di meccaniche per risolvere un livello. Questo progetto di tesi si propone di realizzare un agente intelligente che possa idealmente partecipare alla competizione sfruttando tecniche di pianificazione automatica. In particolare, l'agente progettato si basa sull'algoritmo di pianificazione graphplan che opera a diversi livelli di astrazione posti in gerarchia tra loro ed è stato realizzato completamente in Prolog. Questo progetto mostra quindi come le tecniche di pianificazione automatica siano un valido strumento per risolvere alcune tipologie di giochi innovativi complessi nell'ambito dell'IA.
Resumo:
La tesi presenta la storia e le caratteristiche dei materiali compositi con particolare riguardo ai CFRP, alle resine termoplastiche e ai materiali termoindurenti. Sono, poi, riportati i risultati di alcuni esperimenti condotti su questi materiali con lo scopo di analizzarne le proprietà e capire se possono essere adatti o meno ad un particolare utilizzo. In seguito, si procede con l'analisi del comportamento dei materiali compositi quando vengono soggetti ad impatti a bassa energia, al fine di verificare la variazione subita dalle proprietà dei materiali stessi. Da ultimo, lo studio tratta l'impiego dei CFRP, delle resine termoplastiche e dei materiali termoindurenti nell'industria aerospaziale ed automobilistica.
Resumo:
In Italia ogni anno vengono consumati circa 3 milioni di tonnellate di agrumi, dei quali circa il 30% viene destinato all’industria di trasformazione, generando scarti, principalmente bucce e semi, che tuttavia possono essere considerati a tutti gli effetti una fonte potenziale di composti nutritivi e bioattivi. In questo contesto, il presente elaborato di tesi si è occupato di descrivere le principali caratteristiche e i processi di trasformazione tradizionali degli agrumi, successivamente sono state descritte caratteristiche e proprietà degli scarti che derivano dalla lavorazione primaria e infine i possibili riutilizzi dei sottoprodotti dell’industria agrumaria. Lo smaltimento tradizionale degli scarti e dei sottoprodotti dell’industria agrumaria comporta alte emissioni di CO2 che contribuiscono all’inquinamento ambientale; pertanto, focalizzarsi sul riutilizzo degli scarti porta non solo ad una diminuzione degli stessi ma anche ad una notevole diminuzione dell’inquinamento ambientale, entrambi punti cardine della ricerca attuale e dei decenni a venire. Dall’analisi svolta in questo elaborato è risultato evidente come, oltre alle tradizionali applicazioni degli scarti agrumari nell’alimentazione animale o per la produzione di ammendate, si stanno affiancando applicazioni più innovative, basate sulle biotecnologie, che includono la produzione di acido polilattico, biomateriali sempre più utilizzati in sostituzione alle classiche materie prime, cellulosa batterica, utilizzata per la produzione di packaging alimentari, ed enzimi utilizzabili in svariati processi industriali come l’industria alimentare e della cellulosa.
Resumo:
In questa tesi abbiamo voluto studiare alcune delle proprietà e caratterizzazioni di questa classe di insiemi e di funzioni, nonchè alcune loro possibili applicazioni. Nel primo capitolo vengono analizzati gli insiemi convessi in R^n con le loro proprietà; se ne osserva la relazione con gli iperpiani e con l’inviluppo convesso dell’insieme stesso. Infine abbiamo studiato come la funzione distanza da un insieme caratterizzi gli insiemi convessi. Nel secondo capitolo abbiamo guardato invece le funzioni convesse, osservando alcuni esempi, per poi focalizzarci sulle proprietà generali e diverse possibili caratterizzazioni. In particolare abbiamo osservato come le cosiddette funzioni lisce si relazionano alla convessità. Nella sezione sulla dualità convessa abbiamo infine esaminato il caso di funzioni con codominio R esteso per studiare funzioni convesse semicontinue inferiormente, fino ad arrivare alla dualità. Nel terzo capitolo, vediamo una delle tante possibili applicazioni della teoria convessa, la teoria dei giochi. L’ultimo capitolo è molto breve e non vuole entrare nel merito di questa importante area della matematica, ma vuole solo far “vedere all’opera” alcune delle proprietà della teoria convessa precedentemente esposta.
Resumo:
L'obiettivo di questa tesi è la caratterizzazione dei gruppi di Galois di alcune classi di polinomi separabili e risolubili per radicali. Questa classificazione si baserà sulle proprietà di primitività e imprimitività di tali gruppi, proprietà che descrivono il carattere della loro azione permutativa sulle radici dei polinomi. Da tale analisi potremo inoltre dedurre importanti informazioni sui polinomi, i quali, a loro volta, saranno detti primitivi o imprimitivi. Dopo aver ricordato alcune definizioni e risultati fondamentali di Teoria di Galois e Teoria dei gruppi, studieremo alcuni gruppi di permutazioni, concentrandoci in particolare sul gruppo lineare affine e sul prodotto intrecciato di due gruppi di permutazioni: tali oggetti costituiscono, infatti, gli strumenti principali per la descrizione dei gruppi di Galois che affronteremo negli ultimi capitoli. Nel Capitolo 3, in particolare, ci concentreremo su polinomi imprimitivi di grado p², con p primo. Nel quarto, invece, dimostreremo un potente Teorema che fornisce una notevole caratterizzazione dei gruppi di Galois di tutti i polinomi primitivi e risolubili per radicali.
Resumo:
In questo elaborato si illustra una delle principali proprietà godute dalle funzioni armoniche: la disuguaglianza di Harnack, dal nome del matematico che la dimostrò nel 1887. Nella sua formulazione più semplice, essa afferma che se una funzione armonica è non negativa, allora l'estremo superiore di tale funzione su una palla euclidea è controllato dall'alto dall'estremo inferiore della funzione sulla stessa palla, a meno di una costante moltiplicativa dipendente solo dalla dimensione. Una simile disuguaglianza è soddisfatta anche da soluzioni di equazioni alle derivate parziali più generali dell'equazione di Laplace. Ad esempio, J. Moser nel 1961 dimostra che le soluzioni deboli di equazioni differenziali ellittiche lineari soddisfano una disuguaglianza di tipo Harnack. Tale risultato è argomento dell'ultimo capitolo di questo elaborato.
Resumo:
Questa tesi tratta delle proprietà fondamentali delle funzioni armoniche. Nel primo Capitolo utilizziamo il teorema della divergenza per ottenere importanti identità integrali quali la formula di rappresentazione di Green e la formula dell'integrale di Poisson; tali identità ci permettono di mostrare nel secondo Capitolo che per le funzioni armoniche valgono le formule di media e, in particolare, queste rappresentano una proprietà caratterizzante per tali funzioni. Le formule di media rappresentano un ottimo punto di partenza per lo studio delle proprietà delle funzioni armoniche che osserviamo nel terzo Capitolo; da esse è possibile ottenere il principio del massimo e del minimo forte e la disuguaglianza di Harnack. Da queste due è possibile ottenere alcune importanti proprietà sulla convergenza di successioni di funzioni armoniche; in particolare osserviamo che una successione di funzioni armoniche convergente converge ad una funzione armonica.
Resumo:
Negli ultimi anni il mercato degli NFT è cresciuto in modo sbalorditivo. Questo nuovo token deriva dall’idea di un nuovo standard Ethereum che riesca a distinguere univocamente ogni token. Infatti, può essere associato a proprietà virtuali e digitali ed è in grado di identificare in modo univoco le proprietà a cui si riferisce. Questa nuova tecnologia è in continua evoluzione in molti ambiti, dall’ambito sportivo, a quello dell’arte, alla musica, alla moda così via. Man mano che si sviluppa notiamo che vengono mutati campi, prodotti e servizi già esistenti, ma anche sviluppati dei nuovi. Le persone sono affascinate dagli NFT per il fatto che rappresentano oggetti piacevoli, creativi ed interessanti e poichè ci associano il concetto di “investimento”, “trading”, “guadagno” e necessariamente pensano alle criptovalute quali Bitcoin o Ethereum. Infatti, in molti hanno sentito parlare di almeno una delle opere diventate più famose grazie agli NFT. Ad esempio, l’opera d’arte “Everydays: the First 5000 Days” dell’artista Beeple Mike Winkelmann fu venduta dalla casa d’aste Christie’s ad un prezzo che fece il record di vendita per un unico NFT (più di 69 milioni di dollari). Uno dei settori in cui gli NFT sono entrati riguarda quello dell'arte, dando vita a un vero e proprio fenomeno definito come "Crypto-Art". La preziosità e il valore delle opere digitali si crea sull’unicità dell’opera. Il pregio dell’arte non è per tutti, ma su una nicchia di persone che sono appassionati e collezionisti del mondo dell’arte. L'obiettivo di questa tesi è appunto analizzare le potenzialità e i limiti di NFT in questo contesto.
Resumo:
In questo lavoro di tesi si analizzerà un metodo per risolvere il problema del PageRank alternativo rispetto al tradizionale metodo delle potenze. Verso la fine degli anni '90, con l’avvento del World Wide Web, fu necessario sviluppare degli algoritmi di classificazione in grado di ordinare i siti web in base alla loro rilevanza. Davanti a questa sfida i due matematici A.N.Langville e C.D.Meyer svilupparono il metodo SIAD, "special iterative aggregation/disaggregation method". Lo scopo di questa tesi è in primo luogo di ricostruire il metodo SIAD e analizzarne le proprietà. Seguendo le analisi in un articolo di I.C.Ipsen e S.Kirkland, si ricostruirà nel dettaglio il metodo SIAD, così da esplicitare la convergenza asintotica del metodo in relazione al complemento stocastico scelto. In secondo luogo si analizzerà il metodo SIAD applicato ad una matrice di Google che rispetta ipotesi determinate, le matrici di Google sono solitamente utilizzate per rappresentare il problema del PageRank. Successivamente, si dimostrerà un importante teorema che prova come per ogni matrice di Google si possa individuare un complemento stocastico per cui il metodo SIAD converge più velocemente del metodo delle potenze. Infine, nell’ultimo capitolo si implementerà con il inguaggio di programmazione Matlab il metodo SIAD per una matrice generica e per una matrice di Google. In particolare, si sfrutterà la struttura della matrice di Google per ridurre sensibilmente il costo computazionale del metodo quando applicato applicato ad una tale matrice.
Resumo:
Nella presente tesi si è realizzato uno sviluppo di base per l'implementazione di un motore turboalbero aeronautico all’utilizzo ad idrogeno. La parte iniziale dell'elaborato descrive le caratteristiche e i benefici dell’utilizzo di questo combustibile innovativo e riporta, poi, le principali modifiche hardware, presenti in letteratura, necessarie per l’implementazione voluta su un motore fisico. Vengono, poi, illustrati i modelli di combustori necessari per un corretto funzionamento del sistema propulsivo, oltre all’eventuale necessità di uno scambiatore di calore. Nella parte centrale della tesi, invece, é descritta la conversione di un modello MatLab Simulink del motore Allison 250 c18, esplicando e documentando le principali modifiche apportate riguardo alla creazione delle mappe del modello dinamico utile a ricavare le caratteristiche termodinamiche del flusso in camera di combustione e all'uscita da essa. Viene inoltre mostrato il metodo di utilizzo degli script CEA forniti dalla NASA, valido per desumere le proprietà dei gas post combustione, oltre che per la creazione delle funzioni di interpolazioni. Sono state svolte, infine, diverse simulazioni, con lo scopo di ricavare le portate corrette di combustibile ed osservare gli andamenti dei parametri fondamentali del sistema propulsivo, come: le portate elaborate, le potenze generate, le temperature e le pressioni ottenute.
Resumo:
Numerosi sono gli effetti astrofisici determinati dal moto relativo tra sorgente e osservatore, i quali pemettono non solo di inferire proprietà cinematiche degli oggetti studiati, ma addirittura caratterizanti della loro struttura e fenomenologia. Nonostante gran parte dei fenomeni in Astrofisica appartengano al regime newtoniano, esistono situazioni in cui si rende necessario l'intervento della relatività di Einstein al fine di comprenderle nella maniera più completa. La branca dell'Astrofisica che si occupa dello studio di questi oggetti tanto peculiari è detta Astrofisica delle alte energie. In seguito verrano presentati i principali strumenti offerti dalla relatività, sia nel caso speciale che in quello più generale, per trattatare effetti quali il beaming, l'effetto doppler, il redshift gravitazionale e il lensing. Per quanto riguarda il beaming e l'effetto doppler, verrà affrontata con particolare riguardo la radiazione di sincrotrone e la sua polarizzazione, come questi influenzano la struttura delle righe del ferro nei dischi di accrescimento in AGN e i moti superluminali. In conclusione si tratteranno i moti superluminali.
Resumo:
Nel 1932 l'ingegnere e fisico Karl Jansky progettò un’antenna in grado di rilevare onde radio alla frequenza di 20.5 MHz, con la quale notò un'emissione diffusa che proveniva da ogni zona del cielo e si intensificava verso la costellazione del Sagittario. Oggi sappiamo che quella osservata da Jansky è radiazione di sincrotrone. Il meccanismo di emissione di sincrotrone affonda le sue radici nelle leggi dell'elettromagnetismo: quando una particella carica attraversa una regione di spazio in cui è presente un campo magnetico, viene accelerata dalla forza di Lorentz e comincia ad irraggiare in virtù dell'accelerazione subita, come previsto dalla formula di Larmor. A seconda che il moto avvenga a velocità non relativistiche, relativistiche o ultrarelativistiche, l’emissione è chiamata rispettivamente radiazione di ciclotrone, ciclotrone relativistico e sincrotrone. L’emissione diffusa osservata da Jansky, allora, può essere interpretata come radiazione di sincrotrone prodotta dall’interazione delle particelle ultrarelativistiche dei raggi cosmici con il campo magnetico che permea la Via Lattea, mentre l’emissione più intensa nel Sagittario è oggi identificata con la radiosorgente Sagittarius A*, localizzata in corrispondenza del buco nero supermassiccio al centro della Galassia. L’emissione di sincrotrone rappresenta uno dei processi di emissione più rilevanti in Astrofisica ed è in grado di spiegare l’origine di gran parte della radiazione osservata nella banda radio, tanto di quella diffusa quanto di quella generata da radiosorgenti individuali, come radiogalassie e resti di supernova. Le proprietà e la peculiare distribuzione spettrale della radiazione di sincrotrone consentono di ricavare una serie di informazioni sulla sorgente da cui è stata emessa. Per via dello stretto legame con il campo magnetico, inoltre, la radiazione di questo tipo è uno strumento d’indagine fondamentale per la ricostruzione del campo magnetico galattico ed extragalattico.
Resumo:
Tutte le informazioni riguardanti le proprietà fisiche delle stelle derivano più o meno direttamente dallo studio dei loro spettri. La luce, infatti, contiene informazioni estremamente dettagliate sulla sorgente da cui è stata prodotta. In particolare, lo studio dell’intensità delle righe spettrali di assorbimento permette di ricavare informazioni su composizione, temperatura, abbondanze chimiche, movimenti, pressione e campi ma- gnetici delle stelle. La forma delle righe, inoltre, contiene informazioni sui processi che avvengono nelle atmosfere stellari. L’elaborato è suddiviso in tre sezioni: nel primo capitolo verranno descritti i meccanismi di interazione radiazione-materia alla base della formazione delle righe spettrali. Nel secondo capitolo sarà analizzato il fenomeno dello shift che caratterizza gli spettri stellari. Nel terzo capitolo, infine, si tratterà di tutti quei processi che contribuiscono all’allargamento delle righe spettrali.