163 resultados para parametrice equazioni integro-differenziali
Resumo:
Nella presente tesi sono riassunte le diverse posizioni epistemologiche riguardo alla relazione tra didattica e storia della matematica, insieme alle possibili funzioni di quest'ultima nell'attività scolastica. In particolare ci si è soffermati sull'opportunità di introdurre gli studenti ad un rapporto diretto con le fonti storiche. A tale scopo è stata condotta una sperimentazione in una classe di seconda Liceo, a cui sono stati proposti tre brani di diversi autori e secoli da esaminare in gruppo. Sono stati dettagliatamente descritti e successivamente analizzati i comportamenti messi in atto dagli studenti alla lettura delle fonti.
Resumo:
La tesi affronta il problema della risoluzione delle equazioni di tipo iconale, introducendo delle metodologie simplettiche, ovvero tramite l'uso di sottovarietà Lagrangiane. Si guarda nello specifico alla risoluzione dell'equazione agli autovalori di Schrödinger in una e più dimensioni, mostrando la tecnica approssimativa WKB.
Resumo:
Lo scopo di questa tesi è lo studio della risolubilità per radicali di equazioni polinomiali nel caso in cui il campo dei coefficienti del polinomio abbia caratteristica zero. Nel primo capitolo vengono richiamati i principali risultati riguardanti la teoria di Galois. Nel secondo capitolo si introducono le nozioni di gruppo risolubile e gruppo semplice analizzandone le proprietà. Nel terzo capitolo si definiscono le estensioni di campi radicali e risolubili. Viene inoltre dimostrato il teorema di Galois che mette in evidenza il legame tra gruppi risolubili ed estensioni risolubili. Infine, nell'ultimo capitolo, si applicano i risultati ottenuti al problema della risolubilità per radicali delle equazioni polinomiali dando anche diversi esempi. In particolare viene analizzato il caso del polinomio universale di grado n.
Resumo:
Lo scopo della prima parte di questo elaborato è quello di mostrare come l'approccio geometrico, qui principalmente basato sull'algebra delle forme differenziali, possa semplificare la forma delle equazioni di Maxwell. Verificheremo che tutte le leggi dell'elettromagnetismo possono essere derivate da aspetti puramente geometrici e poi riconosciute come leggi fisiche imponendo le opportune restrizioni. Nella seconda parte trattiamo vari aspetti del monopolo magnetico. Prima lo introdurremo seguendo il percorso di Dirac, poi risolveremo analiticamente i problemi che esso presenta e alla fine inquadreremo i risultati che abbiamo ottenuto all'interno dell'algebra delle forme differenziali.
Resumo:
In questa tesi vengono studiati gli effetti della non-normalità di un operatore all'interno di sistemi dinamici regolati da sistemi di equazioni differenziali ordinarie. Viene studiata la stabilità delle soluzioni, in particolare si approfondiscono fenomeni quali le crescite transitorie. In seguito vengono forniti strumenti grafici come gli Pseudospettri capaci di scoprire e quantificare tali "anomalie". I concetti studiati vengono poi applicati alla teoria dell'ecologia delle popolazioni utilizzando una generalizzazione delle equazioni di Lotka-Volterra. Modelli e matrici vengono implementate in Matlab mentre i risultati grafici sono ottenuti con il Toolbox Eigtool.
Resumo:
Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.
Resumo:
Nella prima sezione di questo lavoro verranno esposti i ragionamenti fisici alla base della scrittura delle equazioni di London-London (1935), capaci di descrivere due importanti fenomeni riguardanti i materiali superconduttori quali la conduttività perfetta (resistenza nulla) e il diamagnetismo perfetto (Effetto Meissner). Verrà in essa infine brevemente descritto l'effetto della più generale conservazione del flusso magnetico nei superconduttori secondo il modello classico. Nella seconda sezione verrà esposto il ragionamento alla base della scrittura del Modello Quantistico Macroscopico, proposto da F.London nel 1948 per cercare di unificare la descrizione elettrodinamica classica della superconduttività con la meccanica quantistica, attraverso la scrittura di una funzione d'onda macroscopica capace di descrivere l'intero ensemble di portatori di carica superelettronici nel loro moto di conduzione.Esso permetterà di prevedere il fenomeno della quantizzazione del flusso magnetico intrappolato da una regione superconduttrice molteplicemente connessa.
Resumo:
In questa tesi viene presentato il metodo della parametrice, che è utilizzato per trovare la soluzione fondamentale di un operatore parabolico a coefficienti hölderiani. Inizialmente si introduce un operatore modello a coefficienti costanti, la cui soluzione fondamentale verrà utilizzata per approssimare quella dell’operatore parabolico. Questa verrà trovata esplicitamente sotto forma di serie di operatori di convoluzione con la soluzione fondamentale dell’operatore a coefficienti costanti. La prova di convergenza e regolarità della serie si basa sullo studio delle proprietà della soluzione fondamentale dell’operatore a coefficienti costanti e degli operatori di convoluzione utilizzati. Infine, si applicherà il metodo della parametrice per trovare la soluzione fondamentale di un’equazione di Fokker-Planck sempre a coefficienti hölderiani.
Resumo:
Scopo di questo elaborato è studiare la risolubilità per radicali di un polinomio a coefficienti in un campo di caratteristica zero attraverso lo studio del gruppo di Galois del suo campo di spezzamento. Dopo aver analizzato alcuni risultati su gruppi risolubili e gruppi semplici, vengono studiate le estensioni radicali e risolubili. Viene inoltre dimostrato su un campo K di caratteristica zero il Teorema di Galois, che caratterizza i polinomi risolubili per radicali f a coefficienti in K attraverso la risolubilità del gruppo di Galois G(L/K), dove L è il campo di spezzamento di f. La tesi contiene anche un'esposizione sintetica del metodo introdotto da Lagrange per la risoluzione di equazioni polinomiali di cui si conosca il gruppo di Galois.
Resumo:
In questa tesi sono stati descritti i principali metodi numerici per la risoluzione di sistemi non lineari. Tali metodi sono stati analizzati sia dal punto di vista teorico (analisi di convergenza locale) che pratico (algoritmo e implementazione).
Resumo:
In questa tesi si studia l'angiogenesi tumorale, dapprima descrivendo i fenomeni biologici alla base della dinamica cellulare, e successivamente, dopo aver introdotto gli strumenti matematici necessari, sviluppandone un modello seguendo la letteratura esistente basato sulle equazioni differenziali stocastiche e su quelle di Fokker-Planck. Ne vengono infine realizzate simulazioni numeriche.
Resumo:
Il testo contiene nozioni base di probabilità necessarie per introdurre i processi stocastici. Sono trattati infatti nel secondo capitolo i processi Gaussiani, di Markov e di Wiener, l'integrazione stocastica alla Ito, e le equazioni differenziali stocastiche. Nel terzo capitolo viene introdotto il rapporto tra la genetica e la matematica, dove si introduce l'evoluzione la selezione naturale, e altri fattori che portano al cambiamento di una popolazione; vengono anche formulate le leggi basilari per una modellizzazione dell’evoluzione fenotipica. Successivamente si entra più nel dettaglio, e si determina un modello stocastico per le mutazioni, cioè un modello che riesca ad approssimare gli effetti dei fattori di fluttuazione all'interno del processo evolutivo.
Resumo:
Viene definito e descritto l'ellissoide di inerzia relativo ad un corpo rigido rispetto ad un punto e la corrispondente matrice di inerzia. Inoltre si definiscono gli angoli di Eulero e vengono ricavate le equazioni di Eulero. Tali strumenti vengono poi utilizzati nell'analisi del moto del corpo rigido libero e con punto fisso e nello studio del moto alla Poinsot di un corpo a struttura giroscopica e dei fenomeni giroscopici.
Resumo:
Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.
Resumo:
La progettazione e la modellazione delle geometrie di corpi complessi come le schiere palettate delle turbomacchine, da sempre impegna il tecnico che, dapprima su carta, e successivamente in forma digitale, deve scontrarsi con le difficoltà sia analitiche di risoluzione di sistemi di equazioni differenziali, che geometriche a causa della doppia curvatura dei profili stessi. L’avvento dei calcolatori ha inevitabilmente giocato un ruolo fondamentale nella rapida evoluzione di tecniche di modellazione, calcolo e rappresentazione, per aiutare il progettista a risolvere completamente il problema, o almeno riscontrare risultati approssimativamente corretti, al fine di ridurre i tempi di realizzazione e i costi dell’impresa. Si vuole dunque cercare di descrivere le fasi che la progettazione oggi richiede, sfruttando quello che i software moderni mettono a disposizione, con l’obiettivo di mostrare uno dei molteplici percorsi che il progettista oggi può seguire per riuscire nel suo scopo.