75 resultados para infinito Cantor numeri transfiniti


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si descrivono la funzione zeta di Riemann, la costante di Eulero-Mascheroni e la funzione gamma di Eulero. Si riportano i legami tra questi e si illustra brevemente l'ipotesi di Riemann degli zeri non banali della funzione zeta, ovvero l'ipotesi della distribuzione dei numeri primi nella retta dei numeri reali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa argomentazione tratta la traduzione e l'adattamento spagnolo del musical The Lion King. In primo luogo viene data una descrizione di che cos'è un musical, quali sono le sue origini, quali tematiche vengono affrontate e da quali numeri è composto lo spettacolo. Viene poi introdotto The Lion King con una breve descrizione del film per poi passare al "making of" del musical, abbiamo quindi una breve descrizione di scene, costumi e maschere. La terza parte è dedicata alla traduzione per la scena: vengono identificate le problematiche maggiori di questo campo della traduzione, si analizzano performability, speakability e soprattutto la singability, la caratteristica principale da tenere a mente quando si traduce un musical anche se spesso non gli viene attribuita l'importanza che merita. Viene poi introdotta la traduzione spagnola de El Rey León e del suo traduttore, Jordi Galcerán, di cui viene descritta una breve biografia in quanto il discorso è incentrato soprattutto nella sua esperienza di traduzione. L'ultima parte è l'analisi delle canzoni. Sono state selezionate sette canzoni di cui sono state analizzate nel dettaglio un minimo di due a un massimo di tre strofe. Ognuna di esse è affiancata dalla versione originale inglese in modo da avere subito chiare quali sono le differenze principali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il punto di partenza dell'elaborato riguarda il modo in cui si giunge, a partire dalla relatività ristretta, a quella generale. Quest'ultima viene poi identificata come una teoria della gravitazione in cui si ottengono le equazioni di campo. Da qui si discute la soluzione delle equazioni di Einstein trovata da Schwarzschild evidenziandone i limiti. Si procede alla estensione di questa soluzione introducendo dapprima le coordinate di Eddington-Finkelstein e poi l'estensione massima data da Kruskal. Infine viene mostrato come è possibile compattificare l'infinito spaziotempo in una regione finita senza alterare la struttura causale. Questo viene fatto tramite delle trasformazioni particolari: le trasformazioni conformi. I diagrammi spaziotemporali che si ottengono dopo la compattificazione conforme sono conosciuti come i digrammi di Penrose e qui si vede come ottenere quelli dello spaziotempo di Minkowski e quelli dello spaziotempo della soluzione di Schwarzschild.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi introduce il problema matematico della rovina del giocatore dopo un'introduzione storica relativa allo sviluppo del gioco d'azzardo ed alla sua concezione sociale. Segue un'analisi di alcuni particolari giochi con un approfondimento sul calcolo della probabilità di vittoria e sul gioco equo. Infine sono introdotti alcuni preliminari matematici relativi alla misura, alle successioni di Bernoulli ed alle leggi dei grandi numeri, necessari per comprendere il problema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’assioma di scelta ha una preistoria, che riguarda l’uso inconsapevole e i primi barlumi di consapevolezza che si trattasse di un nuovo principio di ragionamento. Lo scopo della prima parte di questa tesi è quello di ricostruire questo percorso di usi più o meno impliciti e più o meno necessari che rivelarono la consapevolezza non solo del fatto che fosse indispensabile introdurre un nuovo principio, ma anche che il modo di “fare matematica” stava cambiando. Nei capitoli 2 e 3, si parla dei moltissimi matematici che, senza rendersene conto, utilizzarono l’assioma di scelta nei loro lavori; tra questi anche Cantor che appellandosi alla banalità delle dimostrazioni, evitava spesso di chiarire le situazioni in cui era richiesta questa particolare assunzione. Il capitolo 2 è dedicato ad un caso notevole e rilevante dell’uso inconsapevole dell’Assioma, di cui per la prima volta si accorse R. Bettazzi nel 1892: l’equivalenza delle due nozioni di finito, quella di Dedekind e quella “naturale”. La prima parte di questa tesi si conclude con la dimostrazione di Zermelo del teorema del buon ordinamento e con un’analisi della sua assiomatizzazione della teoria degli insiemi. La seconda parte si apre con il capitolo 5 in cui si parla dell’intenso dibattito sulla dimostrazione di Zermelo e sulla possibilità o meno di accettare il suo Assioma, che coinvolse i matematici di tutta Europa. In quel contesto l’assioma di scelta trovò per lo più oppositori che si appellavano ad alcune sue conseguenze apparentemente paradossali. Queste conseguenze, insieme alle molte importanti, sono analizzate nel capitolo 6. Nell’ultimo capitolo vengono riportate alcune tra le molte equivalenze dell’assioma di scelta con altri enunciati importanti come quello della tricotomia dei cardinali. Ci si sofferma poi sulle conseguenze dell’Assioma e sulla sua influenza sulla matematica del Novecento, quindi sulle formulazioni alternative o su quelle più deboli come l’assioma delle scelte dipendenti e quello delle scelte numerabili. Si conclude con gli importanti risultati, dovuti a Godel e a Cohen sull’indipendenza e sulla consistenza dell’assioma di scelta nell’ambito della teoria degli insiemi di Zermelo-Fraenkel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La firma digitale è uno degli sviluppi più importanti della crittografia a chiave pubblica, che permette di implementarne le funzionalità di sicurezza. La crittografia a chiave pubblica, introdotta nel 1976 da Diffie ed Hellman, è stata l'unica grande rivoluzione nella storia della crittografia. Si distacca in modo radicale da ciò che l'ha preceduta, sia perché i suoi algoritmi si basano su funzioni matematiche e non su operazioni di sostituzione e permutazione, ma sopratutto perché è asimmetrica: prevede l'uso di due chiavi distinte (mentre nelle crittografia simmetrica si usa una sola chiave condivisa tra le parti). In particolare, le funzioni matematiche su cui si basa tale crittografia sono funzioni ben note nella Teoria dei Numeri: ad esempio fattorizzazione, calcolo del logaritmo discreto. La loro importanza deriva dal fatto che si ritiene che siano 'computazionalmente intrattabili' da calcolare. Dei vari schemi per la firma digitale basati sulla crittografia a chiave pubblica, si è scelto di studiare quello proposto dal NIST (National Institute of Standard and Technology): il Digital Signature Standard (DSS), spesso indicato come DSA (Digital Signature Algorithm) dal nome dell'algoritmo che utilizza. Il presente lavoro è strutturato in tre capitoli. Nel Capitolo 1 viene introdotto il concetto di logaritmo discreto (centrale nell'algoritmo DSA) e vengono mostrati alcuni algoritmi per calcolarlo. Nel Capitolo 2, dopo una panoramica sulla crittografia a chiave pubblica, si dà una definizione di firma digitale e delle sue caratteristiche. Chiude il capitolo una spiegazione di un importante strumento utilizzato negli algoritmi di firma digitale: le funzioni hash. Nel Capitolo 3, infine, si analizza nel dettaglio il DSA nelle tre fasi che lo costituiscono (inizializzazione, generazione, verifica), mostrando come il suo funzionamento e la sua sicurezza derivino dai concetti precedentemente illustrati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi è incentrata sulla traduzione di un dossier in lingua francese diviso in due parti, pubblicate in due numeri successivi all’interno di una rivista settoriale per neuroscienziati francofoni. Nella fase di selezione del testo ho svolto il ruolo d’ipotetico editore italiano che gestisce una rivista per neuroscienziati italofoni e che vuole rendere disponibili all’interno della comunità neuroscientifica italiana contributi provenienti dall’estero sotto forma di dossier tematici. Nel primo capitolo ho analizzato il dossier basandomi sulla griglia di Tudor, un modello di analisi testuale ideato a scopi didattici per i corsi di traduzione che in questo caso si presta molto bene come strumento di riflessione sulle caratteristiche del testo source. Nel secondo capitolo valuto la macrostrategia traduttiva più idonea per la redazione del testo d’arrivo e approfondisco sia le conoscenze relative al dominio dei microtesti che costituiscono il dossier sia gli aspetti terminologici relativi ai termini inizialmente sconosciuti. Sempre in questo capitolo approfondisco l’analisi terminologica e propongo alcune schede terminologiche. Nel terzo capitolo presento la proposta di traduzione con testo di partenza a fronte. Infine nel quarto capitolo commento il processo traduttivo analizzando la fase di documentazione, la fase di ricerca terminologica e i principali problemi traduttivi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi sono state applicate le tecniche del gruppo di rinormalizzazione funzionale allo studio della teoria quantistica di campo scalare con simmetria O(N) sia in uno spaziotempo piatto (Euclideo) che nel caso di accoppiamento ad un campo gravitazionale nel paradigma dell'asymptotic safety. Nel primo capitolo vengono esposti in breve alcuni concetti basilari della teoria dei campi in uno spazio euclideo a dimensione arbitraria. Nel secondo capitolo si discute estensivamente il metodo di rinormalizzazione funzionale ideato da Wetterich e si fornisce un primo semplice esempio di applicazione, il modello scalare. Nel terzo capitolo è stato studiato in dettaglio il modello O(N) in uno spaziotempo piatto, ricavando analiticamente le equazioni di evoluzione delle quantità rilevanti del modello. Quindi ci si è specializzati sul caso N infinito. Nel quarto capitolo viene iniziata l'analisi delle equazioni di punto fisso nel limite N infinito, a partire dal caso di dimensione anomala nulla e rinormalizzazione della funzione d'onda costante (approssimazione LPA), già studiato in letteratura. Viene poi considerato il caso NLO nella derivative expansion. Nel quinto capitolo si è introdotto l'accoppiamento non minimale con un campo gravitazionale, la cui natura quantistica è considerata a livello di QFT secondo il paradigma di rinormalizzabilità dell'asymptotic safety. Per questo modello si sono ricavate le equazioni di punto fisso per le principali osservabili e se ne è studiato il comportamento per diversi valori di N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa ricerca affronta in maniera interdisciplinare il tema delle funzioni polinomiali definite sugli anelli degli interi modulo la potenza di un numero primo. In primo luogo è stato esaminato il caso particolare del campo Zp, dimostrando che in esso tutte le funzioni sono polinomiali. In seguito è stato calcolato il numero delle funzioni polinomiali negli interi modulo 9 e modulo 25, mostrando un procedimento che può essere esteso a qualsiasi potenza di un numero primo. Esso fa uso di alcuni risultati di teoria dei numeri e di aritmetica e affronta il tema da un punto di vista prettamente algebrico. A queste dimostrazioni è stato affiancato un esperimento di tipo statistico, il cui obiettivo è cercare una regolarità che permetta, dati il numero primo p e il suo esponente n, di calcolare immediatamente il numero delle funzioni polinomiali nell'anello degli interi modulo p^n. Sono state presentate due congetture, ottenute utilizzando strumenti di tipo informatico: un software di calcolo e un linguaggio di programmazione ad alto livello. Gli strumenti della statistica descrittiva, in particolare il test di Pearson, si sono rivelati essenziali per verificare l'adeguatezza delle supposizioni. Questa ricerca può essere considerata il punto di partenza per dimostrare (o confutare) quello che è stato ipotizzato attraverso un'analisi di tipo sperimentale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nei capitoli I e II ho costruito rigorosamente le funzioni circolari ed esponenziali rispettivamente attraverso un procedimento analitico tratto dal libro Analisi Matematica di Giovanni Prodi. Nel III capitolo, dopo aver introdotto il numero di Nepero e come limite di una particolare successione monotona, ho calcolato i limiti notevoli dell'esponenziale e della sua inversa, che sono alla base del calcolo differenziale di queste funzioni, concludendo poi la sezione dimostrando l'irrazionalità del numero e, base dei logaritmi naturali. Nel capitolo successivo ho dato, delle funzioni circolari ed esponenziali, i rispettivi sviluppi in serie di Taylor ma solamente nel V capitolo potremo renderci veramente conto di come i risultati ottenuti siano fra loro dipendenti. In particolare verrà messa in evidenza come il legame del tutto naturale che si osserva fra le funzioni circolari e le funzioni esponenziali rappresenta le fondamenta di argomenti molto notevoli e pieni di significato, come l'estensione ai numeri complessi dell'esponenziale o le celebri identità di Eulero. L'ultimo capitolo vedrà come protagonista pi greco, così misterioso quanto affascinante, che per secoli ha smosso gli animi dei matematici intenzionati a volerne svelare la natura. Come per il numero di Nepero, non potrà mancare un paragrafo dedicato alla dimostrazione della sua non razionalità.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obiettivo della tesi è fornire nozioni di teoria della misura tramite cui è possibile l'analisi e la descrizione degli insiemi frattali. A tal fine vengono definite la Misura e la Dimensione di Hausdorff, strumenti matematici che permettono di "misurare" tali oggetti particolari, per i quali la classica Misura di Lebesgue non risulta sufficientemente precisa. Viene introdotto, inoltre, il carattere di autosimilarità, comune a molti di questi insiemi, e sono forniti alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, l'insieme di Mandelbrot e il triangolo di Sierpinski. Infine, viene verificata l'ipotesi dell'esistenza di componenti di natura frattale in serie storiche di indici borsistici e di titoli finanziari (Ipotesi dei Mercati Frattali, Peters, 1990).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo della tesi è la trattazione dei logaritmi a partire dalla storia di quest'ultimi, al loro sviluppo, fino ad arrivare alle diverse applicazioni dei logaritmi in svariate discipline. La tesi è strutturata in quattro capitoli, nel primo dei quali si parte analizzando quali istanze teoriche e necessità pratiche abbiano preparato la strada all'introduzione dei logaritmi. Vengono riportati alcuni passi del testo più importante dedicato da Nepero ai logaritmi, Mirifici Logarithmorum Canonis Constructio, la modifica ad opera di Henry Briggs e la diffusione dei logaritmi in gran parte dell' Europa. Nel secondo capitolo viene evidenziato il legame tra i logaritmi e la geometria dell'iperbole per poi passare alla trattazione dei primi studi sulla curva logaritmica. Nel terzo capitolo viene esaminata la controversia tra Leibniz e Bernoulli sul significato da attribuire ai logaritmi dei numeri negativi soffermandosi su come Eulero uscì da una situazione di stallo proponendo una teoria dei logaritmi dei numeri complessi. Nel quarto ed ultimo capitolo vengono analizzati i diversi utilizzi della scala logaritmica ponendo soprattutto l'attenzione sul regolo calcolatore, arrivando infine a mostrare le applicazioni dei logaritmi in altre discipline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La geometria euclidea risulta spesso inadeguata a descrivere le forme della natura. I Frattali, oggetti interrotti e irregolari, come indica il nome stesso, sono più adatti a rappresentare la forma frastagliata delle linee costiere o altri elementi naturali. Lo strumento necessario per studiare rigorosamente i frattali sono i teoremi riguardanti la misura di Hausdorff, con i quali possono definirsi gli s-sets, dove s è la dimensione di Hausdorff. Se s non è intero, l'insieme in gioco può riconoscersi come frattale e non presenta tangenti e densità in quasi nessun punto. I frattali più classici, come gli insiemi di Cantor, Koch e Sierpinski, presentano anche la proprietà di auto-similarità e la dimensione di similitudine viene a coincidere con quella di Hausdorff. Una tecnica basata sulla dimensione frattale, detta box-counting, interviene in applicazioni bio-mediche e risulta utile per studiare le placche senili di varie specie di mammiferi tra cui l'uomo o anche per distinguere un melanoma maligno da una diversa lesione della cute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo della tesi è illustrare l'origine della nozione di logaritmo nei suoi primi decenni dalla nascita, partendo dalle opere di J. Napier (Nepero, 1550-1617) fino a B. Cavalieri (1598-1647), che insieme a J. Keplero (1571-1630) concludono la cosiddetta età pioneristica. Nel primo capitolo sono esposti alcuni mezzi di calcolo usati nel XVI secolo, come i "bastoncini di Nepero"; e il confronto della progressione geometrica con quella aritmetica, che con la conoscenza delle leggi esponenziali, porterà all'invenzione dei logaritmi. Il secondo capitolo è dedicato interamente a Napier (fatto salvo un cenno all'opera di Burgi), con lo scopo di illustrare i suoi due maggiori trattati sui logaritmi: il primo fu sostanzialmente una tavola di numeri da lui inizialmente chiamati "numeri artificiali" e successivamente definiti "logaritmi"; il secondo, curato e pubblicato dal figlio, è un trattato nel quale giustifica il nuovo concetto da lui ottenuto ed i metodi usati per il calcolo delle tavole. Con Henry Briggs (capitolo III) la teoria del logaritmo giunge a maturazione. Egli stesso definì una propria funzione logaritmica Bl_1 che, in seguito, mutò dopo un paio di incontri con Napier. Nelle tavole di Briggs il logaritmo da lui introdotto avrà base 10 e il logaritmo di 1 sarà nullo, definendo così il nostro usuale logaritmo decimale. Nel quarto capitolo mi occupo della diffusione in Italia e in Germania delle nozioni di logaritmo, da parte, rispettivamente di B. Cavalieri e J. Keplero. Cavalieri scrisse parecchio sui logaritmi, pubblicando anche proprie tavole, ma non sembra che abbia raggiunto risultati di grande rilevanza nel campo, tuttavia seppe usare la teoria dei logaritmi in campo geometrico giungendo a formule interessanti. La parte storica della tesi si conclude con alcune notizie sul contributo di Keplero e la diffusione della nozione dei logaritmi neperiani in Germania. La mia esposizione si conclude con qualche notizia sull'uso dei logaritmi e sul regolo calcolatore dalla fine del XIX secolo fin verso gli anni ’70 del secolo scorso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo di questo lavoro è mostrare la potenza della teoria di Galois per caratterizzare i numeri complessi costruibili con riga e compasso o con origami e la soluzione di problemi geometrici della Grecia antica, quali la trisezione dell’angolo e la divisione della circonferenza in n parti uguali. Per raggiungere questo obiettivo determiniamo alcune relazioni significative tra l’assiomatica delle costruzioni con riga e compasso e quella delle costruzioni con origami, antica arte giapponese divenuta recentemente oggetto di studi algebrico-geometrici. Mostriamo che tutte le costruzioni possibili con riga e compasso sono realizzabili con il metodo origami, che in più consente di trisecare l’angolo grazie ad una nuova piega, portando ad estensioni algebriche di campi di gradi della forma 2^a3^b. Presentiamo poi i risultati di Gauss sui poligoni costruibili con riga e compasso, legati ai numeri primi di Fermat e una costruzione dell’eptadecagono regolare. Concludiamo combinando la teoria di Galois e il metodo origami per arrivare alla forma generale del numero di lati di un poligono regolare costruibile mediante origami e alla costruzione esplicita dell’ettagono regolare.