20 resultados para RDF Reification
Resumo:
Viene presentato l’approccio Linked Data, che si serve di descrizioni scritte in linguaggio RDF per rendere espliciti ai calcolatori i legami semantici esistenti tra le risorse che popolano il Web. Si descrive quindi il progetto DBpedia, che si propone di riorganizzare le informazioni disponibili su Wikipedia in formato Linked Data, così da renderle più facilmente consultabili dall’utente e da rendere possibile l’esecuzione di query complesse. Si discute quindi della sfida riguardante l’integrazione di contenuti multimediali (immagini, file audio, video…) su DBpedia e si analizzano tre progetti rivolti in tal senso: Multipedia, DBpedia Commons e IMGpedia. Vengono infine sottolineate l’importanza e le potenzialità legate alla creazione di un Web Semantico.
Resumo:
Questo lavoro di tesi si concentra sulle estensioni apportate a BEX (Bibliographic Explorer), una web app finalizzata alla navigazione di pubblicazioni scientifiche attraverso le loro citazioni. Il settore in cui si colloca è il Semantic Publishing, un nuovo ambito di ricerca derivato dall'applicazione delle tecnologie del Semantic Web allo Scholarly Publishing, che ha come scopo la pubblicazione di articoli accademici a cui vengono associati metadati semantici. BEX nasce all'interno del Semantic Lancet Project del Dipartimento di Informatica dell'Università di Bologna, il cui obiettivo è costruire un Linked Open Dataset di pubblicazioni accademiche, il Semantic Lancet Triplestore (SLT), e fornire strumenti per la navigazione ad alto livello e l'uso approfondito dei dati in esso contenuti. Gli scholarly Linked Open Data elaborati da BEX sono insiemi di triple RDF conformi alle ontologie SPAR. Originariamente BEX ha come backend il dataset SLT che contiene metadati relativi alle pubblicazioni del Journal Of Web Semantics di Elsevier. BEX offre viste avanzate tramite un'interfaccia interattiva e una buona user-experience. L'utente di BEX è principalmente il ricercatore universitario, che per compiere le sue attività quotidiane fa largo uso delle Digital Library (DL) e dei servizi che esse offrono. Dato il fermento dei ricercatori nel campo del Semantic Publishing e la veloce diffusione della pubblicazione di scholarly Linked Open Data è ragionevole pensare di ampliare e mantenere un progetto che possa provvedere al sense making di dati altrimenti interrogabili solo in modo diretto con queries SPARQL. Le principali integrazioni a BEX sono state fatte in termini di scalabilità e flessibilità: si è implementata la paginazione dei risultati di ricerca, l'indipendenza da SLT per poter gestire datasets diversi per struttura e volume, e la creazione di viste author centric tramite aggregazione di dati e comparazione tra autori.
Resumo:
La tesi ha lo scopo di introdurre Investiga, un'applicazione per l'estrazione automatica di informazioni da articoli scientifici in formato PDF e pubblicazione di queste informazioni secondo i principi e i formati Linked Open Data, creata per la tesi. Questa applicazione è basata sul Task 2 della SemPub 2016, una challenge che ha come scopo principale quello di migliorare l'estrazione di informazioni da articoli scientifici in formato PDF. Investiga estrae i capitoli di primo livello, le didascalie delle figure e delle tabelle da un dato articolo e crea un grafo delle informazioni così estratte collegate adeguatamente tra loro. La tesi inoltre analizza gli strumenti esistenti per l'estrazione automatica di informazioni da documenti PDF e dei loro limiti.
Resumo:
La tesi descrive PARLEN, uno strumento che permette l'analisi di articoli, l'estrazione e il riconoscimento delle entità - ad esempio persone, istituzioni, città - e il collegamento delle stesse a risorse online. PARLEN è inoltre in grado di pubblicare i dati estratti in un dataset basato su principi e tecnologie del Semantic Web.
RSLT: trasformazione di Open LinkedData in testi in linguaggio naturaletramite template dichiarativi
Resumo:
La diffusione del Semantic Web e di dati semantici in formato RDF, ha creato la necessità di un meccanismo di trasformazione di tali informazioni, semplici da interpretare per una macchina, in un linguaggio naturale, di facile comprensione per l'uomo. Nella dissertazione si discuterà delle soluzioni trovate in letteratura e, nel dettaglio, di RSLT, una libreria JavaScript che cerca di risolvere questo problema, consentendo la creazione di applicazioni web in grado di eseguire queste trasformazioni tramite template dichiarativi. Verranno illustrati, inoltre, tutti i cambiamenti e tutte le modi�che introdotte nella versione 1.1 della libreria, la cui nuova funzionalit�à principale �è il supporto a SPARQL 1.0.