8 resultados para Numerical Operator

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo central deste trabalho é o estudo e a aplicação do método Kalman-Bucy no processo de deconvolução ao impulso e de deconvolução com predição, onde é considerado que os dados observados são classificados como não-estacionários. Os dados utilizados neste trabalho são sintéticos e, com isto, esta Tese tem características de um exercício numérico e investigativo. O operador de deconvolução ao impulso é obtido a partir da teoria de CRUMP (1974) fazendo uso das soluções das equações Wiener-Hopf apresentadas por KALMAN-BUCY (1961) nas formas contínuas e discretas considerando o processo como não estacionário. O operador de predição (KBCP) está baseado nas teorias de CRUMP (1974) e MENDEL ET AL (1979). Sua estrutura assemelha-se ao filtro Wiener-Hopf onde os coeficientes do operador (WHLP) são obtidos através da autocorrelação, e no caso (KBCP) são obtidos a partir da função bi(k). o problema é definido em duas etapas: a primeira consta da geração do sinal, e a segunda da sua avaliação. A deconvolução realizada aqui é classificada como estatística, e é um modelo fortemente baseado nas propriedades do sinal registrado e de sua representação. Os métodos foram aplicados apenas em dados sintéticos de seção fonte-comum obtida a partir dos modelos com interfaces contínuas e camadas homogêneas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos tem-se verificado através de várias publicações um interesse crescente em métodos de migração com amplitude verdadeira, com o objetivo de obter mais informações sobre as propriedades de refletividade da subsuperfície da terra. A maior parte desses trabalhos tem tratado deste tema baseando-se na aproximação de Born, como em Bleistein (1987) e Bleistein et al. (1987), ou na aproximação do campo de ondas pela teoria do raio como Hubral et al. (1991), Schleicher et al. (1993) e Martins et al. (1997). Considerando configurações arbitrárias de fontes e receptores, as reflexões primárias compressionais podem ser imageadas em reflexões migradas no domínio do tempo ou profundidade de tal modo que as amplitudes do campo de ondas migrado são uma medida do coeficiente de reflexão dependente do ângulo de incidência. Para realizar esta tarefa, vários algoritmos têm sido propostos nos últimos anos baseados nas aproximações de Kirchhoff e Born. Essas duas abordagens utilizam um operador integral de empilhamento de difrações ponderado que é aplicado aos dados da seção sísmica de entrada. Como resultado obtém-se uma seção migrada onde, em cada ponto refletor, tem-se o pulso da fonte com amplitude proporcional ao coeficiente de reflexão naquele ponto. Baseando-se na aproximação de Kirchhoff e na aproximação da teoria do raio do campo de ondas, neste trabalho é obtida a função peso para modelos bidimensionais (2-D) e dois e meio dimensionais (2,5-D) que é aplicada a dados sintéticos com e sem ruído. O resultado mostra a precisão e estabilidade do método de migração em 2-D e 2,5-D como uma ferramenta para a obtenção de informações importantes da subsuperfície da terra, que é de grande interesse para a análise da variação da amplitude com o afastamento (ângulo). Em suma, este trabalho apresenta expressões para as funções peso 2-D e 2,5-D em função de parâmetros ao longo de cada ramo do raio. São mostrados exemplos da aplicação do algoritmo de migração em profundidade a dados sintéticos 2-D e 2,5-D obtidos por modelamento sísmico através da teoria do raio usando o pacote Seis88 (Cervený e Psencík, 1988) e os resultados confirmaram a remoção do espalhamento geométrico dos dados migrados mesmo na presença de ruído. Testes adicionais foram realizados para a análise do efeito de alongamento do pulso na migração em profundidade (Tygel et al., 1994) e a aplicação do empilhamento múltiplo (Tygel et al., 1993) para a estimativa de atributos dos pontos de reflexão - no caso o ângulo de reflexão e a posição do receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho avaliamos uma classe de operadores de continuação de campos de onda, baseados em equações unidirecionais e com aplicação direta à migração sísmica. O método de representação de equações de onda unidirecionais, desenvolvido neste trabalho, é válido para abertura angular arbitrária, baseia-se no conceito de rigidez de um semiespaço, na transformação Dirichlet-Neumann e em sua discretização por elementos finitos. O método de construção dos operadores de continuação requer a introdução de variáveis auxiliares cujo número cresce em função da maior abertura angular desejada para o operador. Efetuamos a implementação no domínio do espaço e da frequência o que permite sua imediata paralelização. Baseados em experimentos numéricos, que avaliam a relação de dispersão e a resposta ao impulso do operador, propomos prescrições que permitem especificar o número de variáveis auxiliares e o passo de continuação para o operador de migração. A aplicação do algoritmo nos dados do modelo de domo salino da SEG-EAGE demonstra a capacidade do algoritmo em migrar refletores com forte mergulho em meios com forte variação lateral de velocidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A implementação convencional do método de migração por diferenças finitas 3D, usa a técnica de splitting inline e crossline para melhorar a eficiência computacional deste algoritmo. Esta abordagem torna o algoritmo eficiente computacionalmente, porém cria anisotropia numérica. Esta anisotropia numérica por sua vez, pode levar a falsos posicionamentos de refletores inclinados, especialmente refletores com grandes ângulos de mergulho. Neste trabalho, como objetivo de evitar o surgimento da anisotropia numérica, implementamos o operador de extrapolação do campo de onda para baixo sem usar a técnica splitting inline e crossline no domínio frequência-espaço via método de diferenças finitas implícito, usando a aproximação de Padé complexa. Comparamos a performance do algoritmo iterativo Bi-gradiente conjugado estabilizado (Bi-CGSTAB) com o multifrontal massively parallel solver (MUMPS) para resolver o sistema linear oriundo do método de migração por diferenças finitas. Verifica-se que usando a expansão de Padé complexa ao invés da expansão de Padé real, o algoritmo iterativo Bi-CGSTAB fica mais eficientes computacionalmente, ou seja, a expansão de Padé complexa atua como um precondicionador para este algoritmo iterativo. Como consequência, o algoritmo iterativo Bi-CGSTAB é bem mais eficiente computacionalmente que o MUMPS para resolver o sistema linear quando usado apenas um termo da expansão de Padé complexa. Para aproximações de grandes ângulos, métodos diretos são necessários. Para validar e avaliar as propriedades desses algoritmos de migração, usamos o modelo de sal SEG/EAGE para calcular a sua resposta ao impulso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implementações dos métodos de migração diferença finita e Fourier (FFD) usam fatoração direcional para acelerar a performance e economizar custo computacional. Entretanto essa técnica introduz anisotropia numérica que podem erroneamente posicionar os refletores em mergulho ao longo das direções em que o não foi aplicado a fatoração no operador de migração. Implementamos a migração FFD 3D, sem usar a técnica do fatoração direcional, no domínio da frequência usando aproximação de Padé complexa. Essa aproximação elimina a anisotropia numérica ao preço de maior custo computacional buscando a solução do campo de onda para um sistema linear de banda larga. Experimentos numéricos, tanto no modelo homogêneo e heterogêneo, mostram que a técnica da fatoração direcional produz notáveis erros de posicionamento dos refletores em meios com forte variação lateral de velocidade. Comparamos a performance de resolução do algoritmo de FFD usando o método iterativo gradiente biconjugado estabilizado (BICGSTAB) e o multifrontal massively parallel direct solver (MUMPS). Mostrando que a aproximação de Padé complexa é um eficiente precondicionador para o BICGSTAB, reduzindo o número de iterações em relação a aproximação de Padé real. O método iterativo BICGSTAB é mais eficiente que o método direto MUMPS, quando usamos apenas um termo da expansão de Padé complexa. Para maior ângulo de abertura do operador, mais termos da série são requeridos no operador de migração, e neste caso, a performance do método direto é mais eficiente. A validação do algoritmo e as propriedades da evolução computacional foram avaliadas para a resposta ao impulso do modelo de sal SEG/EAGE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos tem-se verificado um interesse crescente no desenvolvimento de algoritmos de imageamento sísmico com a finalidade de obter uma imagem da subsuperfície da terra. A migração pelo método de Kirchhoff, por exemplo, é um método de imageamento muito eficiente empregado na busca da localização de refletores na subsuperficie, quando dispomos do cálculo dos tempos de trânsito necessários para a etapa de empilhamento, sendo estes obtidos neste trabalho através da solução da equação eiconal. Primeiramente, é apresentada a teoria da migração de Kirchhoff em profundidade baseada na teoria do raio, sendo em seguida introduzida a equação eiconal, através da qual são obtidos os tempos de trânsitos empregados no empilhamento das curvas de difrações. Em seguida é desenvolvido um algoritmo de migração em profundidade fazendo uso dos tempos de trânsito obtidos através da equação eiconal. Finalmente, aplicamos este algoritmo a dados sintéticos contendo ruído aditivo e múltiplas e obtemos como resultado uma seção sísmica na profundidade. Através dos experimentos feitos neste trabalho observou-se que o algoritmo de migração desenvolvido mostrou-se bastante eficiente e eficaz na reconstrução da imagem dos refletores.