54 resultados para Prospección sísmica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo apresentar os resultados da modelagem sísmica em meios com fortes descontinuidades de propriedades físicas, com ênfase na existência de difrações e múltiplas reflexões, tendo a Bacia do Amazonas como referência à modelagem. As condições de estabilidade e de fronteiras utilizadas no cálculo do campo de ondas sísmicas foram analisadas numericamente pelo método das diferenças finitas, visando melhor compreensão e controle da interpretação de dados sísmicos. A geologia da Bacia do Amazonas é constituída por rochas sedimentares depositadas desde o Ordoviciano até o Recente que atingem espessuras da ordem de 5 km. Os corpos de diabásio, presentes entre os sedimentos paleozóicos, estão dispostos na forma de soleiras, alcançam espessuras de centenas de metros e perfazem um volume total de aproximadamente 90000 Km³. A ocorrência de tais estruturas é responsável pela existência de reflexões múltiplas durante a propagação da onda sísmica o que impossibilita melhor interpretação dos horizontes refletores que se encontram abaixo destas soleiras. Para representar situações geológicas desse tipo foram usados um modelo (sintético) acústico de velocidades e um código computacional elaborado via método das diferenças finitas com aproximação de quarta ordem no espaço e no tempo da equação da onda. A aplicação dos métodos de diferenças finitas para o estudo de propagação de ondas sísmicas melhorou a compreensão sobre a propagação em meios onde existem heterogeneidades significativas, tendo como resultado boa resolução na interpretação dos eventos de reflexão sísmica em áreas de interesse. Como resultado dos experimentos numéricos realizados em meio de geologia complexa, foi observada a influência significativa das reflexões múltiplas devido à camada de alta velocidade, isto provocou maior perda de energia e dificultou a interpretação dos alvos. Por esta razão recomenda-se a integração de dados de superfície com os de poço, com o objetivo de obter melhor imagem dos alvos abaixo das soleiras de diabásio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo central deste trabalho é o estudo e a aplicação do método Kalman-Bucy no processo de deconvolução ao impulso e de deconvolução com predição, onde é considerado que os dados observados são classificados como não-estacionários. Os dados utilizados neste trabalho são sintéticos e, com isto, esta Tese tem características de um exercício numérico e investigativo. O operador de deconvolução ao impulso é obtido a partir da teoria de CRUMP (1974) fazendo uso das soluções das equações Wiener-Hopf apresentadas por KALMAN-BUCY (1961) nas formas contínuas e discretas considerando o processo como não estacionário. O operador de predição (KBCP) está baseado nas teorias de CRUMP (1974) e MENDEL ET AL (1979). Sua estrutura assemelha-se ao filtro Wiener-Hopf onde os coeficientes do operador (WHLP) são obtidos através da autocorrelação, e no caso (KBCP) são obtidos a partir da função bi(k). o problema é definido em duas etapas: a primeira consta da geração do sinal, e a segunda da sua avaliação. A deconvolução realizada aqui é classificada como estatística, e é um modelo fortemente baseado nas propriedades do sinal registrado e de sua representação. Os métodos foram aplicados apenas em dados sintéticos de seção fonte-comum obtida a partir dos modelos com interfaces contínuas e camadas homogêneas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A necessidade da adoção de modelos elásticos anisotrópicos, no contexto da sísmica de exploração, vem crescendo com o advento de novas técnicas de aquisição de dados como VSP, walkway VSP, tomografia poço a poço e levantamentos sísmicos com grande afastamento. Meios anisotrópicos, no contexto da sísmica de exploração, são modelos efetivos para explicar a propagação de ondas através de meios que apresentam padrões de heterogeneidade em escala muito menor que o comprimento de onda das ondas sísmicas. Particularmente, estes modelos são muito úteis para explicar o dado sísmico mais robusto que são as medidas de tempo de trânsito. Neste trabalho, são investigados aspectos da propagação de ondas, traçado de raios e inversão de tempos de trânsito em meios anisotrópicos. É estudada a propagação de ondas SH em meios anisotrópicos estratificados na situação mais geral onde estas ondas podem ocorrer, ou seja, em meios monoclínicos com um plano vertical de simetria especular. É mostrado que o campo de ondas SH refletido a partir de um semi-espaço estratificado, não apresenta qualquer informação sobre a possível presença de anisotropia em subsuperfície. São apresentados métodos simples e eficientes para o traçado de raios em 3D através de meios anisotrópicos estratificados, baseados no princípio de Fermat. Estes métodos constituem o primeiro passo para o desenvolvimento de algoritmos de inversão de tempos de trânsito para meios anisotrópicos em 3D, a partir de dados de VSP e walkaway VSP. Esta abordagem é promissora para determinação de modelos de velocidade, que são necessários para migração de dados sísmicos 3D na presença de anisotropia. É efetuada a análise da inversão tomográfica não linear, para meios estratificados transversalmente isotrópicos com um eixo de simetria vertical(TIV). As limitações dos dados de tempo de trânsito de eventos qP para determinação das constantes elásticas, são estabelecidas e caracterizados os efeitos da falta de cobertura angular completa na inversão tomográfica. Um algoritmo de inversão foi desenvolvido e avaliado em dados sintéticos. A aplicação do algoritmo a dados reais demonstra a consistência de meios TIV. Esta abordagem é útil para casos onde há informação a priori sobre a estratificação quase plana das formações e onde os próprios dados do levantamento poço a poço apresentam um alto grau de simetria especular em relação a um plano vertical. Também pode ser útil em interpretações preliminares, onde a estimativa de um meio estratificado, serve como modelo de fundo para se efetuar análises mais detalhadas, por exemplo, como um modelo de velocidades anisotrópico para migração, ou como um modelo de calibração para análises de AVO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo geral desenvolver uma metodologia sistemática para a inversão de dados de reflexão sísmica em arranjo ponto-médio-comum (PMC), partindo do caso 1D de variação vertical de velocidade e espessura que permite a obtenção de modelos de velocidades intervalares, vint,n, as espessuras intervalares, zn, e as velocidades média-quadrática, vRMS,n, em seções PMC individualizadas. Uma consequência disso é a transformação direta destes valores do tempo para profundidade. Como contribuição a análise de velocidade, foram desenvolvidos dois métodos para atacar o problema baseado na estimativa de velocidade intervalar. O primeiro método foi baseado na marcação manual em seções PMC, e inversão por ajuste de curvas no sentido dos quadrados-mínimos. O segundo método foi baseado na otimização da função semblance para se obter uma marcação automática. A metodologia combinou dois tipos de otimização: um Método Global (Método Price ou Simplex), e um Método Local (Gradiente de Segunda Ordem ou Conjugado), submetidos a informação à priori e vínculos. A marcação de eventos na seção tempo-distância faz parte dos processos de inversão, e os pontos marcados constituem os dados de entrada juntamente com as informações à priori do modelo a ser ajustado. A marcação deve, por princípio, evitar eventos que representem múltiplas, difrações e interseções, e numa seção pode ser feita mais de 50 marcações de eventos, enquanto que num mapa semblance não se consegue marcar mais de 10 eventos de reflexão. A aplicação deste trabalho é voltada a dados sísmicos de bacias sedimentares em ambientes marinhos para se obter uma distribuição de velocidades para a subsuperfície, onde o modelo plano-horizontal é aplicado em seções PMC individualizadas, e cuja solução pode ser usada como um modelo inicial em processos posteriores. Os dados reais da Bacia Marinha usados neste trabalho foram levantados pela PETROBRAS em 1985, e a linha sísmica selecionada foi a de número L5519 da Bacia do Camamu, e o PMC apresentado é a de número 237. A linha é composta de 1098 pontos de tiro, com arranjo unilateraldireito. O intervalo de amostragem é 4 ms. O espaçamento entre os geofones é 13,34 m com o primeiro geofone localizado a 300 m da fonte. O espaçamento entre as fontes é de 26,68 m. Como conclusão geral, o método de estimativa de velocidade intervalar apresentada neste trabalho fica como suporte alternativo ao processo de análise de velocidades, onde se faz necessário um controle sobre a sequência de inversão dos PMCs ao longo da linha sísmica para que a solução possa ser usada como modelo inicial ao imageamento, e posterior inversão tomográfica. Como etapas futuras, podemos propor trabalhos voltados direto e especificamente a análise de velocidade sísmica estendendo o caso 2D de otimização do semblance ao caso 3D, estender o presente estudo para o caso baseado na teoria do raio imagem com a finalidade de produzir um mapa continuo de velocidades para toda a seção sísmica de forma automática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O trabalho em pauta tem como objetivo o modelamento da crosta, através da inversão de dados de refração sísmica profunda, segundo camadas planas horizontais lateralmente homogêneas, sobre um semi-espaço. O modelo direto é dado pela expressão analítica da curva tempo-distância como uma função que depende da distância fonte-estação e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetórias do raio sísmico, regidas pela Lei de Snell. O cálculo dos tempos de chegada por este procedimento, exige a utilização de um modelo cujas velocidades sejam crescentes com a profundidade, de modo que a ocorrência das camadas de baixa velocidade (CBV) é contornada pela reparametrização do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sísmico, e não como refrator. A metodologia de inversão utilizada tem em vista não só a determinação das soluções possíveis, mas também a realização de uma análise sobre as causas responsáveis pela ambiguidade do problema. A região de pesquisa das prováveis soluções é vinculada segundo limites superiores e inferiores para cada parâmetro procurado, e pelo estabelecimento de limites superiores para os valores de distâncias críticas, calculadas a partir do vetor de parâmetros. O processo de inversão é feito utilizando-se uma técnica de otimização do ajuste de curvas através da busca direta no espaço dos parâmetros, denominado COMPLEX. Esta técnica apresenta a vantagem de poder ser utilizada com qualquer função objeto, e ser bastante prática na obtenção de múltiplas soluções do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-função, o algoritmo foi adaptado de modo a minimizar simultaneamente várias funções objetos, com vínculos nos parâmetros. A inversão é feita de modo a se obter um conjunto de soluções representativas do universo existente. Por sua vez, a análise da ambiguidade é realizada pela análise fatorial modo-Q, através da qual é possível se caracterizar as propriedades comuns existentes no elenco das soluções analisadas. Os testes com dados sintéticos e reais foram feitos tendo como aproximação inicial ao processo de inversão, os valores de velocidades e espessuras calculados diretamente da interpretação visual do sismograma. Para a realização dos primeiros, utilizou-se sismogramas calculados pelo método da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraídos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na região norte da Grã-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros físicos apresentam apenas suaves variações, no conjunto das soluções obtidas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos 30 anos no Brasil, o mapeamento de camada bauxítica tem sido sempre efetuado através de perfilagens de poços. Neste estudo, aplicou-se o método da sísmica de refração rasa pela primeira vez, em cerca de 3.000m de perfis, em caráter experimental em algumas localidades ao longo da rodovia BR-10, assim como no Platô Esperança (região de Jabuti-PA) e perto da cidade de Açailândia (MA); com objetivo de delimitar a camada de bauxita. Embora se tenha utilizado, em algumas ocasiões, durante a interpretação, o método de distância crítica no cálculo de profundidade, foi possível, mediante o emprego do Método Recíproco Generalizado (GRM), o processamento e interpretação dos dados, para se obter a delimitação contínua da camada investigada. O GRM apresenta vantagens sobre os métodos tradicionais, tais como poder delimitar camadas onduladas, detetar camadas escondidas, além da sensibilidade para camadas com mergulho até 20°. A partir dós gráficos da análise de velocidade, foi calculada para a camada de bauxita uma velocidade média de 840 m/s, e mediante o emprego dos tempos de profundidade chegou-se a sua delimitação: ela possui um comportamento irregular, tendo uma espessura média de 5m. A pesquisa geofísica realizada nas três áreas-piloto tem grande importância porque o método utilizado poderá ser aplicado a outras regiões, em condições geológicas semelhantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo a modelagem sísmica em meios com fortes descontinuidades de propriedades físicas, com ênfase na existência de difrações. Como parte deste estudo foi feita a análise numérica visando as condições de estabilidade e de fronteiras utilizadas no cálculo do campo de ondas sísmicas. Para a validação do programa de diferenças finitas foi feita a comparação cinemática com a Teoria do Raio para um modelo simples. O motivo deste estudo é ter uma melhor compreensão e controle sobre os problemas de modelagem, visando contribuir para a solução de problemas na interpretação de dados sísmicos. Segundo vários autores na literatura geológica, Derby (1877), Evans (1906), Paiva (1929) e Moura (1938). A Bacia do Amazonas é constituída por rochas sedimentares depositadas desde o Ordoviciano até o recente, atingindo espessuras da ordem de 5 km. Os corpos de diabásio, presentes entre os sedimentos paleozóicos, estão dispostos na forma de soleiras, alcançando espessuras de centenas de metros, perfazendo um volume total de 90.000 quilômetros cúbicos. A ocorrência de tais estruturas é responsável pela existência de reflexões múltiplas durante a propagação da onda sísmica, impossibilitando uma melhor interpretação dos horizontes refletores que se encontram abaixo das soleiras. Para representar situações geológicas desse tipo foi usado um modelo acústico de velocidades. Para o cálculo dos sismogramas foi utilizado um programa de diferenças finitas com aproximação de quarta ordem da equação da onda acústica no espaço e no tempo. As aplicações dos métodos de diferenças finitas para o estudo de propagação de ondas sísmicas têm melhorado a compreensão sobre a propagação em meios onde existem heterogeneidades significativas, tendo como resultado boa resolução na interpretação dos eventos de reflexão sísmica em áreas de interesse. Como resultado dos experimentos numéricos realizados em meio de geologia complexa, foi observado a influência significativa das múltiplas devido a camada de alta velocidade, o que faz com que haja maior perda de energia dificultando a interpretação dos alvos. Por esta razão recomendo a integração de dados de superfície com os dados de poço, com o objetivo de se obter uma melhor imagem dos alvos abaixo das soleiras de diabásio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O empilhamento por superfície de reflexão comum (ou empilhamento SRC), conhecido como empilhamento CRS, do inglês Commom reflection surface, constitui-se em um novo método para o processamento sísmico na simulação de seções afastamento nulo (AN) e afastamento comum (AC). Este método é baseado em uma aproximação paraxial hiperbólica de segunda ordem dos tempos de trânsito de reflexão na vizinhança de um raio central. Para a simulação de seção AN, o raio central é um raio normal, enquanto que para a simulação de uma seção AC o raio central é um raio de afastamento finito. Em adição à seção AN, o método de empilhamento SRC também fornece estimativas dos atributos cinemáticos do campo de onda, sendo aplicados, por exemplo, na determinação (por um processo de inversão) da velocidade intervalar, no cálculo do espalhamento geométrico, na estimativa da zona de Fresnel, e também na simulação de eventos de tempos de difrações, este último tendo uma grande importância para a migração pré-empilhamento. Neste trabalho é proposta uma nova estratégia para fazer uma migração em profundidade pré-empilhamento, que usa os atributos cinemáticos do campo de onda derivados do empilhamento SRC, conhecido por método CRS-PSDM, do inglês CRS based pre-stack depth migration. O método CRS-PSDM usa os resultados obtidos do método SRC, isto é, as seções dos atributos cinemáticos do campo de onda, para construir uma superfície de tempos de trânsito de empilhamento, ao longo da qual as amplitudes do dado sísmico de múltipla cobertura são somadas, sendo o resultado da soma atribuído a um dado ponto em profundidade, na zona alvo de migração que é definida por uma malha regular. Similarmente ao método convencional de migração tipo Kirchhoff (K-PSDM), o método CRS-PSDM precisa de um modelo de velocidade de migração. Contrário ao método K-PSDM, o método CRS-PSDM necessita apenas computar os tempos de trânsito afastamento nulo, ao seja, ao longo de um único raio ligando o ponto considerado em profundidade a uma dada posição de fonte e receptor coincidentes na superfície. O resultado final deste procedimento é uma imagem sísmica em profundidade dos refletores a partir do dado de múltipla cobertura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os dados sísmicos terrestres são afetados pela existência de irregularidades na superfície de medição, e.g. a topografia. Neste sentido, para obter uma imagem sísmica de alta resolução, faz-se necessário corrigir estas irregularidades usando técnicas de processamento sísmico, e.g. correições estáticas residuais e de campo. O método de empilhamento Superfície de Reflexão Comum, CRS ("Common-Reflection-Surface", em inglês) é uma nova técnica de processamento para simular seções sísmicas com afastamento-nulo, ZO ("Zero-Offset", em inglês) a partir de dados sísmicos de cobertura múltipla. Este método baseia-se na aproximação hiperbólica de tempos de trânsito paraxiais de segunda ordem referido ao raio (central) normal. O operador de empilhamento CRS para uma superfície de medição planar depende de três parâmetros, denominados o ângulo de emergência do raio normal, a curvatura da onda Ponto de Incidência Normal, NIP ("Normal Incidence Point", em inglês) e a curvatura da onda Normal, N. Neste artigo o método de empilhamento CRS ZO 2-D é modificado com a finalidade de considerar uma superfície de medição com topografia suave também dependente desses parâmetros. Com este novo formalismo CRS, obtemos uma seção sísmica ZO de alta resolução, sem aplicar as correições estáticas, onde em cada ponto desta seção são estimados os três parâmetros relevantes do processo de empilhamento CRS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A migração com amplitudes verdadeiras de dados de reflexão sísmica, em profundidade ou em tempo, possibilita que seja obtida uma medida dos coeficientes de reflexão dos chamados eventos de reflexão primária. Estes eventos são constituídos, por exemplo, pelas reflexões de ondas longitudinais P-P em refletores de curvaturas arbitrárias e suaves. Um dos métodos mais conhecido é o chamado migração de Kirchhoff, através do qual a imagem sísmica é produzida pela integração do campo de ondas sísmicas, utilizando-se superfícies de difrações, denominadas de Superfícies de Huygens. A fim de se obter uma estimativa dos coeficientes de reflexão durante a migração, isto é a correção do efeito do espalhamento geométrico, utiliza-se uma função peso no operador integral de migração. A obtenção desta função peso é feita pela solução assintótica da integral em pontos estacionários. Tanto no cálculo dos tempos de trânsito como na determinação da função peso, necessita-se do traçamento de raios, o que torna a migração em situações de forte heterogeneidade da propriedade física um processo com alto custo computacional. Neste trabalho é apresentado um algoritmo de migração em profundidade com amplitudes verdadeiras, para o caso em que se tem uma fonte sísmica pontual, sendo o modelo de velocidades em subsuperfície representado por uma função que varia em duas dimensões, e constante na terceira dimensão. Esta situação, conhecida como modelo dois-e-meio dimensional (2,5-D), possui características típicas de muitas situações de interesse na exploração do petróleo, como é o caso da aquisição de dados sísmicos 2-D com receptores ao longo de uma linha sísmica e fonte sísmica 3-D. Em particular, é dada ênfase ao caso em que a velocidade de propagação da onda sísmica varia linearmente com a profundidade. Outro tópico de grande importância abordado nesse trabalho diz respeito ao método de inversão sísmica denominado empilhamento duplo de difrações. Através do quociente de dois empilhamentos com pesos apropriados, pode-se determinar propriedades físicas e parâmetros geométricos relacionados com a trajetória do raio refletido, os quais podem ser utilizados a posteriori no processamento dos dados sísmicos, visando por exemplo, a análise de amplitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extrair informações litológicas da subsuperfície através de dados sísmicos constitui-se num grande desafio à prospecção sísmica, pois a hipótese de estratificações formadas por camadas isotrópicas se mostra insuficiente para representar o comportamento do campo elástico em levantamentos com grandes afastamentos entre fonte e receptor, geofones multicomponentes, medidas de VSP tridimensional, entre outros. Sob este panorama, a prospecção sísmica passa a considerar modelos anisotrópicos de subsuperfície para, por exemplo, caracterizar reservatórios. O objetivo deste texto é apresentar um formalismo para modelar o espalhamento de pulsos a partir de ondas planas incidentes em interfaces planas horizontais que separam meios anisotrópicos. Este espalhamento é obtido primeiramente, através da formulação explícita dos campos de deformação e tração como função das matrizes propagadoras, de polarização e de impedância do meio. Em seguidaeste formalismo é usado para a obtenção das matrizes dos coeficientes de reflexão e transmissão através de uma interface plana horizontal para posteriormente, ser generalizado para o espalhamento através de múltiplas camadas. Finalmente, inserem-se ao campo da onda incidente as amplitudes de um pulso analítico para calcular o espalhamento do pulso através de estratificações.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta resultados práticos de uma atenção sistemática dada ao processamento e à interpretação sísmica de algumas linhas terrestres do conjunto de dados do gráben do Tacutu (Brasil), sobre os quais foram aplicadas etapas fundamentais do sistema WIT de imageamento do empilhamento CRS (Superfície de Reflexão Comum) vinculado a dados. Como resultado, esperamos estabelecer um fluxograma para a reavaliação sísmica de bacias sedimentares. Fundamentado nos atributos de frente de onda resultantes do empilhamento CRS, um macro-modelo suave de velocidades foi obtido através de inversão tomográfica. Usando este macro-modelo, foi realizado uma migração à profundidade pré- e pós-empilhamento. Além disso, outras técnicas baseadas no empilhamento CRS foram realizadas em paralelo como correção estática residual e migração de abertura-limitada baseada na zona de Fresnel projetada. Uma interpretação geológica sobre as seções empilhadas e migradas foi esboçada. A partir dos detalhes visuais dos painéis é possível interpretar desconformidades, afinamentos, um anticlinal principal falhado com conjuntos de horstes e grábens. Também, uma parte da linha selecionada precisa de processamento mais detalhado para evidenciar melhor qualquer estrutura presente na subsuperfície.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas bacias sedimentares da região Amazônica, a geração e o acúmulo de hidrocarboneto estão relacionados com a presença das soleiras de diabásio. Estas rochas magmáticas intrusivas possuem grandes contrastes de impedância com as rochas sedimentares encaixantes, resultando em múltiplas externas e internas, com amplitudes semelhantes às das reflexões sísmicas primárias. Estas múltiplas podem predominar sobre as informações oriundas de interfaces mais profundas, dificultando o processamento, a interpretação e o imageamento da seção de sísmica. O objetivo da presente tese é realizar a atenuação de múltiplas em seções sintéticas fontecomum (CS), através da combinação dos métodos Wiener-Hopf-Levinson de predição (WHLP) e o do empilhamento superfície-de-reflexão-comum (CRS), aqui denominando pela sigla WHLPCRS. O operador de deconvolução é calculado com as amplitudes reais do sinal sísmico e traço-a-traço, o que consideramos como uma melhor eficiência para a operação de atenuação. A identificação das múltiplas é feita na seção de afastamento-nulo (AN) simulada com o empilhamento CRS, utilizando o critério da periodicidade entre primária e suas múltiplas. Os atributos da frente de onda, obtidos através do empilhamento CRS, são utilizados na definição de janelas móveis no domínio tempo-espaço, e usados para calcular o operador WHLP-CRS. No desenvolvimento do presente trabalho, visamos evitar a inconveniência da seção processada ZO; desenhar e aplicar operadores na configuração CS; e estender o método WHL para camadas curvas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho foi desenvolvido um método de solução ao problema inverso para modelos sísmicos compostos por camadas homogêneas e isotrópicas separadas por superfícies suaves, que determina as velocidades intervalares em profundidade e calcula a geometria das interfaces. O tempo de trânsito é expresso como uma função de parâmetros referidos a um sistema de coordenadas fixo no raio central, que é determinada numericamente na superfície superior do modelo. Essa função é posteriormente calculada na interface anterior que limita a camada não conhecida, através de um processo que determina a função característica em profundidade. A partir da função avaliada na interface anterior se calculam sua velocidade intervalar e a geometria da superfície posterior onde tem lugar a reflexão do raio. O procedimento se repete de uma forma recursiva nas camadas mais profundas obtendo assim a solução completa do modelo, não precisando em nenhum passo informação diferente à das camadas superiores. O método foi expresso num algoritmo e se desenvolveram programas de computador, os quais foram testados com dados sintéticos de modelos que representam feições estruturais comuns nas seções geológicas, fornecendo as velocidades em profundidade e permitindo a reconstrução das interfaces. Uma análise de sensibilidade sobre os programas mostrou que a determinação da função característica e a estimação das velocidades intervalares e geometria das interfaces são feitos por métodos considerados estáveis. O intervalo empírico de aplicabilidade das correções dinâmicas hiperbólicas foi tomado como uma estimativa da ordem de magnitude do intervalo válido para a aplicação do método.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O método de empilhamento sísmico CRS simula seções sísmicas ZO a partir de dados de cobertura múltipla, independente do macro-modelo de velocidades. Para meios 2-D, a função tempo de trânsito de empilhamento depende de três parâmetros, a saber: do ângulo de emergência do raio de reflexão normal (em relação à normal da superfície) e das curvaturas das frentes de onda relacionadas às ondas hipotéticas, denominadas NIP e Normal. O empilhamento CRS consiste na soma das amplitudes dos traços sísmicos em dados de múltipla cobertura, ao longo da superfície definida pela função tempo de trânsito do empilhamento CRS, que melhor se ajusta aos dados. O resultado do empilhamento CRS é assinalado a pontos de uma malha pré-definida na seção ZO. Como resultado tem-se a simulação de uma seção sísmica ZO. Isto significa que para cada ponto da seção ZO deve-se estimar o trio de parâmetros ótimos que produz a máxima coerência entre os eventos de reflexão sísmica. Nesta Tese apresenta-se fórmulas para o método CRS 2-D e para a velocidade NMO, que consideram a topografia da superfície de medição. O algoritmo é baseado na estratégia de otimização dos parâmetros de fórmula CRS através de um processo em três etapas: 1) Busca dos parâmetros, o ângulo de emergência e a curvatura da onda NIP, aplicando uma otimização global, 2) busca de um parâmetro, a curvatura da onda N, aplicando uma otimização global, e 3) busca de três parâmetros aplicando uma otimização local para refinar os parâmetros estimados nas etapas anteriores. Na primeira e segunda etapas é usado o algoritmo Simulated Annealing (SA) e na terceira etapa é usado o algoritmo Variable Metric (VM). Para o caso de uma superfície de medição com variações topográficas suaves, foi considerada a curvatura desta superfície no algoritmo do método de empilhamento CRS 2-D, com aplicação a dados sintéticos. O resultado foi uma seção ZO simulada, de alta qualidade ao ser comparada com a seção ZO obtida por modelamento direto, com uma alta razão sinal-ruído, além da estimativa do trio de parâmetros da função tempo de trânsito. Foi realizada uma nálise de sensibilidade para a nova função de tempo de trânsito CRS em relação à curvatura da superfície de medição. Os resultados demonstraram que a função tempo de trânsito CRS é mais sensível nos pontos-médios afastados do ponto central e para grandes afastamentos. As expressões da velocidade NMO apresentadas foram aplicadas para estimar as velocidades e as profundidades dos refletores para um modelo 2-D com topografia suave. Para a inversão destas velocidades e profundidades dos refletores, foi considerado o algoritmo de inversão tipo Dix. A velocidade NMO para uma superfície de medição curva, permite estimar muito melhor estas velocidades e profundidades dos refletores, que as velocidades NMO referidas as superfícies planas. Também apresenta-se uma abordagem do empilhamento CRS no caso 3-D. neste caso a função tempo de trânsito depende de oito parâmetros. São abordadas cinco estratégias de busca destes parâmetros. A combinação de duas destas estratégias (estratégias das três aproximações dos tempos de trânsito e a estratégia das configurações e curvaturas arbitrárias) foi aplicada exitosamente no empilhamento CRS 3-D de dados sintéticos e reais.