59 resultados para Large-scale nonlinear optimization problems
em Reposit
Resumo:
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are completed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving constrained nonlinear optimization problems. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach.
Resumo:
We consider Lipschitz continuous-time nonlinear optimization problems and provide first-order necessary optimality conditions of both Fritz John and Karush-Kuhn-Tucker types. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We discuss sufficient conditions of optimality for nonsmooth continuous-time nonlinear optimization problems under generalized convexity assumptions. These include both first-order and second-order criteria. (C) 1998 Academic Press.
Resumo:
Neural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems.
Resumo:
This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.
Resumo:
This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Performance and economic indicators of a large scale fish farm that produces round fish, located in Mato Grosso State, Brazil, were evaluated. The 130.8 ha-water surface area was distributed in 30 ponds. Average total production costs and the following economic indicators were calculated: gross income (GI), gross margin (GM), gross margin index (GMI), profitability index (PI) and profit (P) for the farm as a whole and for ten ponds individually. Production performance indicators were also obtained, such as: production cycle (PC), apparent feed conversion (FC), average biomass storage (ABS), survival index (SI) and final average weight (FAW). The average costs to produce an average 2.971 kg.ha-1 per year were: R$ 2.43, R$ 0.72 and R$ 3.15 as average variable, fixed and total costs, respectively. Gross margin and profit per year per hectare of water surface were R$ 2,316.91 and R$ 180.98, respectively. The individual evaluation of the ponds showed that the best pond performance was obtained for PI 38%, FC 1.7, ABS 0.980 kg.m-2, TS 56%, FAW 1.873 kg with PC of 12.3 months. The worst PI was obtained for the pond that displayed losses of 138%, FC 2.6, ABS 0.110 kg.m-2, SI 16% and FAW 1.811 kg. However, large scale production of round-fish in farms is economically feasible. The studied farm displays favorable conditions to improve performance and economic indicators, but it is necessary to reproduce the breeding techniques and performance indicators achieved in few ponds to the entire farm.