30 resultados para shape memory alloy

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamical response of a coupled oscillator is investigated, taking in consideration the nonlinear behavior of a SMA spring coupling the two oscillators. Due to the nonlinear coupling terms, the system exhibits both regular and chaotic motions. The Poincaré sections for different sets of coupling parameters are verified. © 2011 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work is to illustrate an application of angular active control in a sectioned airfoil using shape memory alloys. In the proposed model, one wants to establish the shape of the airfoil profile based on the determination of an angle between its two sections. This angle is obtained by the effect of the shape memory of the alloy by passing an electric current that modifies the temperature of the wire through the Joule effect, changing the shape of the alloy. This material is capable of converting thermal energy into mechanical energy and once permanently deformed, the material can return to its original shape by heating. Due to the presence of nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of a control system based on fuzzy logic. Through numerical tests, the performance of the fuzzy controller is compared with an on-off controller applied in a sectioned airfoil model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) provide a compact and effective actuation for a variety of mechanical systems. In this paper, a numerical simulation study of a three degree of-freedom airfoil, subjected to two-dimensional incompressible inviscid flow using a SMA is presented. SMA wire actuators are used to control the flap movement of a wing section. Through the thermo-mechanical constitutive equation of the SMA proposed by Brison, we simulate numerically the behavior of a double SMA wire actuator. Two SMA actuators are used: one to move the flap down and the other to move the flap up. Through the numerical results conducted in the present study, the behavior and characteristics of an SMA actuator with two SMA wires are shown the effectiveness of the SMA actuator. In conclusion, this paper shows the feasibility of using SMA wire actuators for flap movement, with success

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMART material systems offer great possibilities in terms of providing novel and economical solutions to engineering problems. The technological advantages of these materials over traditional ones are due to their unique microstructure and molecular properties. Smart materials such as shape memory alloys (SMA), has been used in such diverse areas of engineering science, nowadays. In this paper, we present a numerical investigation of the dynamics interaction of a nonideal structure (NIS). We analyze the phenomenon of the passage through resonance region in the steady state processes. We remarked that this kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. The results obtained by using numerical simulations are discussed in details. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal analysis and compression tests at room temperature have been carried out for Cu-10 wt.% Al and Cu-10 wt.% Al-10 wt.% Ag alloys samples. The results indicate that the decomposition reaction of the (beta(1)) parent phase is decreased suppressed and a martensite stabilization effect can be induced by Ag addition. The Cu-Al-Ag alloy shows some degree of shape memory capacity. (C) 2007 Elsevier B.V. All rights reserved.