11 resultados para scaling law
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The baryon coupling to its current (λB), in conventional QCD sum rule calculations (QCDSR), is shown to scale as the cubic power of the baryon mass, MB. Some theoretical justification for it comes from a simple light-cone model and also general scaling arguments for QCD. But more importantly, taken as a phenomenological ansatz for the present, this may find very good use in current explorations of possible applications of QCDSR to baryon physics both at temperature T = 0, T ≠ 0 and/or density ρ = 0, ρ ≠ 0. © World Scientific Publishing Company.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Space-charge-limited currents measurements have been carried out on undoped amorphous poly p-phenylene sulfide. The scaling law is checked for different samples with varying thickness, and J-V data analyzed. The position of the quasi-Fermi level and the density of states was obtained.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive business world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good with a single set of the parameters for all the curves. Further, the empirical data of the variation of the standard deviation of the growth rate with the size of the firm are in accordance with the present theory rather than a simple power law. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]
Resumo:
In the present work, we propose a model for the statistical distribution of people versus number of steps acquired by them in a learning process, based on competition, learning and natural selection. We consider that learning ability is normally distributed. We found that the number of people versus step acquired by them in a learning process is given through a power law. As competition, learning and selection is also at the core of all economical and social systems, we consider that power-law scaling is a quantitative description of this process in social systems. This gives an alternative thinking in holistic properties of complex systems. (C) 2004 Elsevier B.V. All rights reserved.