Convergence towards asymptotic state in 1-D mappings: a scaling investigation


Autoria(s): Teixeira, Rivania M. N.; Rando, Danilo S.; Geraldo, Felipe C.; Costa Filho, R. N.; Oliveira, Juliano A. de; Leonel, Edson D.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

21/10/2015

21/10/2015

26/06/2015

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 2012/23688-5

Decay to asymptotic steady state in one-dimensional logistic-like mappings is characterized by considering a phenomenological description supported by numerical simulations and confirmed by a theoretical description. As the control parameter is varied bifurcations in the fixed points appear. We verified at the bifurcation point in both; the transcritical, pitchfork and period-doubling bifurcations, that the decay for the stationary point is characterized via a homogeneous function with three critical exponents depending on the nonlinearity of the mapping. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law whose slope is independent of the nonlinearity. The formalism is general and can be extended to other dissipative mappings. (C) 2015 Elsevier B.V. All rights reserved.

Formato

1246-1250

Identificador

http://www.sciencedirect.com/science/article/pii/S0375960115001760

Physics Letters A, v. 379, n. 18-19, p. 1246-1250, 2015.

0375-9601

http://hdl.handle.net/11449/129052

http://dx.doi.org/10.1016/j.physleta.2015.02.019

WOS:000352173600010

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Physics Letters A

Direitos

closedAccess

Palavras-Chave #Scaling law #Critical exponents #Homogeneous function
Tipo

info:eu-repo/semantics/article