Statistical and dynamical properties of a dissipative kicked rotator


Autoria(s): Oliveira, Diego F. M.; Leone, Edson D.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

01/11/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 12/23688-5

Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky's relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors. (C) 2014 Elsevier B.V. All rights reserved.

Formato

498-514

Identificador

http://dx.doi.org/10.1016/j.physa.2014.06.005

Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 413, p. 498-514, 2014.

0378-4371

http://hdl.handle.net/11449/116691

10.1016/j.physa.2014.06.005

WOS:000340977700052

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Physica A-statistical Mechanics And Its Applications

Direitos

closedAccess

Palavras-Chave #Chaos #Scaling law #Dissipation #Shrimp
Tipo

info:eu-repo/semantics/article