27 resultados para pore structure
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pore structure of dealuminated kaolin and metakaolin was studied by small-angle X-ray scattering (SAXS). Both parent kaolin and metakaolin have about 10% of the total pore volume provided by globular pores with 105 Å mean pore size. Their surface area is about 14 m2/g. Acid dealumination of kaolin causes an increase of its globular pore volume without an appreciable change in the mean pore size, its surface area increasing up to about 90 m2/g. Acid dealumination of metakaolin enhances the globular pore volume, although there is generation of slit-shaped pores with a narrow thickness distribution whose mean value is 14 Å. This interlayer spacing causes an increase in surface area of about 190 m2/g by SAXS. © 1994.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.
Resumo:
Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gets were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale xi = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Silica xerogels were prepared from sonohydrolysis of tetraethoxysilane and exchange of the liquid phase of the wet gel by acetone. Monolithic xerogels were obtained by slow evaporation of acetone. The structural characteristics of the xerogels were studied as a function of temperature up to 1100 degrees C by means of bulk and skeletal density measurements, linear shrinkage measurements and thermal analyses (DTA, TG and DL). The results were correlated with the evolution in the UV-Vis absorption. Particularly, the initial pore structure of the dried acetone-exchanged xerogel was studied by small-angle X-ray scattering and nitrogen adsorption. The acetone-exchanged xerogels exhibit greater porosity in the mesopore region presenting greater mean pore size (similar to 4 nm) when compared to non-exchanged xerogels. The porosity of the xerogels is practically stable in the temperature range between 200 degrees C and 800 degrees C. Evolution in the structure of the solid particles (silica network) is the predominant process upon heating up to about 400 degrees C and pore elimination is the predominant process above 900 degrees C. At 1000 degrees C the xerogels are still monolithic and retain about 5 vol.% pores. The xerogels exhibited foaming phenomenon after hold for 10 h at 1100 degrees C. This temperature is even higher than that found for foaming of non-exchanged xerogels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)