95 resultados para partial least square modeling
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work describes the application of partial least squares (PLS) regression to variables that represent the oxidation data of several types of secondary metabolite isolated from the family Asteraceae. The oxidation states were calculated for each carbon atom of the involved compounds after these had been matched with their biogenetic precursor. The states of oxidation variations were named oxidation steps. This methodology represents a new approach to inspect the oxidative changes in taxa. Partial least square (PLS) regression was used to inspect the relationships among terpenoids, cournarins, polyacetylenes, and flavonoids from a data base containing approximately 27,000 botanical entries. The results show an interdependence between the average oxidation states of each class of secondary metabolite at tribe and sub tribe levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.
Resumo:
The evaluation of population characteristics, particularly those of endemic species, aids in population preservation and management. Hermit crabs present an innate behavior of occupying shells, which tends to individual needs and limits their distribution. This study characterized the pattern of occupation of gastropod shells by the hermit Loxopagurus loxochelis in three bays of the southwestern coast of Brazil. Monthly collections were made from January/1998 to December/1999 in the bays Ubatumirim (UBM), Ubatuba (UBA) and Mar Virado (MV) with a shrimping boat. Overall, ten species of gastropod shells were occupied by L. loxochelis. The shell of Olivancillaria urceus represented 66.8% of those occupied. Morphometric relationships demonstrated a differential occupation of the more abundant shells among demographic groups, where most of the males occupied O. urceus, non-ovigerous females occupied O. urceus and Buccinanops cochlidium, and ovigerous females occupied B. cochlidium and Stramonita haemastoma. Most of the individuals occupied the more abundant shells, considered adequate for the morphology of this hermit crab species. Thus, the studied bays seem to be stable and propitious environments for population perpetuation and the settlement of new individuals.
Resumo:
China is an important center of origin for the genus Citrus L. of the family Rutaceae and is rich in wild Citrus species. The taxonomy of Citrus has been a subject of controversy for more than a half century. We propose that the metabolite profiles of Chinese native Citrus species can be used for classification and understanding of the taxonomic relationships within the Citrus germplasm. In this study, triplicate gas chromatography-mass spectrometry (GC-MS) metabolite profiles of 20 Citrus species/varieties were acquired, including 10 native varieties originating in China. R-(+)-limonene, alpha-pinene, sabinene and alpha-terpinene were found to be major characteristic components of the essential oils analyzed in this study, and these compounds contributed greatly to the metabolic classification. The three basic species of the subgenus Eucitrus (Swingle's system), i.e., C. reticulata Blanco, C. medica L. and C. grandis Osb., were clearly differentiated based upon their metabolite profiles using hierarchical cluster analysis (HCA) and partial least square-discriminant analysis (PLS-DA). All the presumed hybrid genotypes, including sweet orange (C. sinensis Osb.), sour orange (C. aurantium L.), lemon (C. limon Burm.f.), rough lemon (C. jambhiri Lush.), rangpur lime (C. limonia Osb.) and grapefruit (C. paradisi Macf.), were grouped closely together with one of their suggested parent species in the HCA-dendrogram and the PLS-DA score plot. These results clearly demonstrated that the metabolite profiles of Citrus species could be utilized for the taxonomic classification of the genus and are complementary to the existing taxonomic evidence, especially for the identification and differentiation of hybrid species.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.