9 resultados para Wigner function

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mapping which relates the Wigner phase-space distribution function associated with a given stationary quantum-mechanical wavefunction to a specific solution of the time-independent Liouville transport equation is obtained. Two examples are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mapping that relates the Wigner phase-space distribution function of a given stationary quantum mechani-cal wave function, a solution of the Schrödinger equation, to a specific solution of the Liouville equation, both subject to the same potential, is studied. By making this mapping, bound states are described by semiclassical distribution functions still depending on Planck's constant, whereas for elastic scattering of a particle by a potential they do not depend on it, the classical limit being reached in this case. Following this method, the mapped distributions of a particle bound in the Pöschl-Teller potential and also in a modified oscillator potential are obtained.