11 resultados para Virtual Circuits Switching
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work aims to demonstrate an application of telemetry for monitoring process variables. The authors developed the prototype of a dedicated device capable of multiplexing, encoding and transmitting real-time data signals via amplitude-shift keying modulation to remotely located device(s). The prototype development is described in details, enabling the reproduction of the proposed telemetry system for a three-phase motor as well as for other devices. Furthermore, the proposed device has an easy implementation by using of accessible components and low cost, also presenting a tutorial and educational purpose. © 2011 IEEE.
Resumo:
This paper presents a novel single-phase high power factor PWM boost rectifier, featuring soft commutation of the active switches at zero-current (ZCS). It incorporates the most desirable properties of the conventional PWM and the soft-switching resonant techniques. The input current shaping is achieved with average current mode control, and continuous inductor current mode. This new PWM converter provides ZCS turn-on and turn-off of the active switches, and it is suitable for high power applications employing IGBTs. Principle of operation, theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400 Vdc output voltage are presented. The measured efficiency and power factor were 96.2% and 0.99 respectively, with an input current THD equal to 3.94%, for an input voltage THD equal to 3.8%, at rated load.
Resumo:
The authors present an offline switching power supply with multiple isolated outputs and unity power factor with the use of only one power processing stage, based on the DC-DC SEPIC (single ended primary inductance converter) modulated by variable hysteresis current control. The principle of operation, the theoretical analysis, the design procedure, an example, and simulation results are presented. A laboratory prototype, rated at 160 W, operating at a maximum switching frequency of 100 kHz, with isolated outputs rated at +5 V/15 A -5 V/1 A, +12 V/6 A and -12 V/1 A, has been built given an input power factor near unity.
Resumo:
Trade-off between settling time and micropower consumption in MOS regulated cascode current sources as building parts in high-accuracy, current-switching D/A converters is analyzed. The regulation-loop frequency characteristic is obtained and difficulties to impose a dominant-pole condition to the resulting 2nd-order system are discussed. Raising pole frequencies while meeting consumption requirements is basically limited by parasitic capacitances. An alternative is found by imposing a twin-pole system in which design constraints are somewhat relaxed and settling slightly faster. Relationships between pole frequencies, transistor geometry and bias are established. Simulated waveforms obtained with PSpice of designed circuits following a voltage perturbation suggest a good agreement with theory. The proposed approach applied to the design of a micropower current-mode D/A converter improves its simulated settling performance.
Resumo:
A new family of dc-to-dc pulse-width-modulated (PWM) converters is presented. These converters feature soft-commutation at zero-current (ZC) in the active switches. The new ZCS-PWM Boost and new ZCS-PWM Zeta converters, both based on the new ZCS-PWM soft-commutation cell proposed, are used as examples to illustrate the operation of the new family of converters.
Resumo:
This paper presents the virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, an open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, that is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplish with nonholonomics mobile robots models with diferencial transmission. © 2008 IEEE.
Resumo:
Considering different single and multiphase circuits feeding linear and non-linear loads, this paper presents theoretical discussions and experimental evaluation of the recent Conservative Power Theory (CPT), by means of Virtual Instrumentation concepts. The main goal is to analyze the results of such power theory definitions under nonsinusoidal and unbalanced conditions, pointing out its major advantages, possible drawbacks or relevant aspects for discussion. © 2009 IEEE.
Resumo:
This paper proposes a novel differential mixer topology. The traditional stage of switching is replaced by a stack of NMOS and PMOS transistors combined. A design is given of a 900 MHz down-conversion mixer using a 0.35 μm CMOS process. Comparison with conventional mixer shows that the topology leads to a better performance in terms of conversion gain and linearity. ©2012 IEEE.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A new family of direct current (DC) to DC converters based on a zero current switching pulse width modulated (ZCS-PWM) soft commutation cell is presented. This ZCS-PWM cell is consists of two transistors, two diodes, two inductors and one capacitor; and provides zero voltage turn-on to the diodes, a zero-current turn-on and a zero-current zero-voltage turn-off to the transistors. In addition, a new commutation cell in a new ZCS-PWM boost rectifier is developed, obtaining a structure with power factor near the unity, high efficiency at wide load range and low total harmonic distortion in the input current.
Resumo:
This paper deals with a system that describes an electrical circuitcomposed by a linear system coupled to a nonlinear one involving a tunneldiode in a flush-and-fill circuit. One of the most comprehensive models for thiskind of circuits was introduced by R. Fitzhugh in 1961, when taking on carebiological tasks. The equation has in its phase plane only two periodic solutions,namely, the unstable singular point S0 and the stable cycle Γ. If the system isat rest on S0, the natural flow of orbits seeks to switch-on the process by going- as time goes by - toward its steady-state, Γ. By using suitable controls it ispossible to reverse such natural tendency going in a minimal time from Γ toS0, switching-off in this way the system. To achieve this goal it is mandatorya minimal enough strength on controls. These facts will be shown by means ofconsiderations on the null control sets in the process.