10 resultados para Virtual Circuits Switching
em CaltechTHESIS
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.
Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.
Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.
Resumo:
C. elegans is a compact system of 302 neurons with identifiable and mapped connections that makes it ideal for systems analysis. This work is a demonstration of what I have been able to learn about the nature of state-specific modulation and reversibility during a state called lethargus, a sleep-like state in the worm. I begin with description about the nervous system of the worm, the nature of sleep in the worm, the questions about behavior and its apparent circuit properties, the tools available and used to manipulate the nervous system, and what I have been able to learn from these studies. I end with clues that the physiology helps to teach us about the dynamics of state specific modulation, what makes sleep so different from other states, and how we can use these measurements to understand which modulators, neurotransmitters, and channels can be used to create different dynamics in a simple model system.
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
The visual system is a remarkable platform that evolved to solve difficult computational problems such as detection, recognition, and classification of objects. Of great interest is the face-processing network, a sub-system buried deep in the temporal lobe, dedicated for analyzing specific type of objects (faces). In this thesis, I focus on the problem of face detection by the face-processing network. Insights obtained from years of developing computer-vision algorithms to solve this task have suggested that it may be efficiently and effectively solved by detection and integration of local contrast features. Does the brain use a similar strategy? To answer this question, I embark on a journey that takes me through the development and optimization of dedicated tools for targeting and perturbing deep brain structures. Data collected using MR-guided electrophysiology in early face-processing regions was found to have strong selectivity for contrast features, similar to ones used by artificial systems. While individual cells were tuned for only a small subset of features, the population as a whole encoded the full spectrum of features that are predictive to the presence of a face in an image. Together with additional evidence, my results suggest a possible computational mechanism for face detection in early face processing regions. To move from correlation to causation, I focus on adopting an emergent technology for perturbing brain activity using light: optogenetics. While this technique has the potential to overcome problems associated with the de-facto way of brain stimulation (electrical microstimulation), many open questions remain about its applicability and effectiveness for perturbing the non-human primate (NHP) brain. In a set of experiments, I use viral vectors to deliver genetically encoded optogenetic constructs to the frontal eye field and faceselective regions in NHP and examine their effects side-by-side with electrical microstimulation to assess their effectiveness in perturbing neural activity as well as behavior. Results suggest that cells are robustly and strongly modulated upon light delivery and that such perturbation can modulate and even initiate motor behavior, thus, paving the way for future explorations that may apply these tools to study connectivity and information flow in the face processing network.
Resumo:
Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.
Resumo:
Synthetic biology combines biological parts from different sources in order to engineer non-native, functional systems. While there is a lot of potential for synthetic biology to revolutionize processes, such as the production of pharmaceuticals, engineering synthetic systems has been challenging. It is oftentimes necessary to explore a large design space to balance the levels of interacting components in the circuit. There are also times where it is desirable to incorporate enzymes that have non-biological functions into a synthetic circuit. Tuning the levels of different components, however, is often restricted to a fixed operating point, and this makes synthetic systems sensitive to changes in the environment. Natural systems are able to respond dynamically to a changing environment by obtaining information relevant to the function of the circuit. This work addresses these problems by establishing frameworks and mechanisms that allow synthetic circuits to communicate with the environment, maintain fixed ratios between components, and potentially add new parts that are outside the realm of current biological function. These frameworks provide a way for synthetic circuits to behave more like natural circuits by enabling a dynamic response, and provide a systematic and rational way to search design space to an experimentally tractable size where likely solutions exist. We hope that the contributions described below will aid in allowing synthetic biology to realize its potential.
Resumo:
The complex domain structure in ferroelectrics gives rise to electromechanical coupling, and its evolution (via domain switching) results in a time-dependent (i.e. viscoelastic) response. Although ferroelectrics are used in many technological applications, most do not attempt to exploit the viscoelastic response of ferroelectrics, mainly due to a lack of understanding and accurate models for their description and prediction. Thus, the aim of this thesis research is to gain better understanding of the influence of domain evolution in ferroelectrics on their dynamic mechanical response. There have been few studies on the viscoelastic properties of ferroelectrics, mainly due to a lack of experimental methods. Therefore, an apparatus and method called Broadband Electromechanical Spectroscopy (BES) was designed and built. BES allows for the simultaneous application of dynamic mechanical and electrical loading in a vacuum environment. Using BES, the dynamic stiffness and loss tangent in bending and torsion of a particular ferroelectric, viz. lead zirconate titanate (PZT), was characterized for different combinations of electrical and mechanical loading frequencies throughout the entire electric displacement hysteresis. Experimental results showed significant increases in loss tangent (by nearly an order of magnitude) and compliance during domain switching, which shows promise as a new approach to structural damping. A continuum model of the viscoelasticity of ferroelectrics was developed, which incorporates microstructural evolution via internal variables and associated kinetic relations. For the first time, through a new linearization process, the incremental dynamic stiffness and loss tangent of materials were computed throughout the entire electric displacement hysteresis for different combinations of mechanical and electrical loading frequencies. The model accurately captured experimental results. Using the understanding gained from the characterization and modeling of PZT, two applications of domain switching kinetics were explored by using Micro Fiber Composites (MFCs). Proofs of concept of set-and-hold actuation and structural damping using MFCs were demonstrated.
Resumo:
Biomolecular circuit engineering is critical for implementing complex functions in vivo, and is a baseline method in the synthetic biology space. However, current methods for conducting biomolecular circuit engineering are time-consuming and tedious. A complete design-build-test cycle typically takes weeks' to months' time due to the lack of an intermediary between design ex vivo and testing in vivo. In this work, we explore the development and application of a "biomolecular breadboard" composed of an in-vitro transcription-translation (TX-TL) lysate to rapidly speed up the engineering design-build-test cycle. We first developed protocols for creating and using lysates for conducting biological circuit design. By doing so we simplified the existing technology to an affordable ($0.03/uL) and easy to use three-tube reagent system. We then developed tools to accelerate circuit design by allowing for linear DNA use in lieu of plasmid DNA, and by utilizing principles of modular assembly. This allowed the design-build-test cycle to be reduced to under a business day. We then characterized protein degradation dynamics in the breadboard to aid to implementing complex circuits. Finally, we demonstrated that the breadboard could be applied to engineer complex synthetic circuits in vitro and in vivo. Specifically, we utilized our understanding of linear DNA prototyping, modular assembly, and protein degradation dynamics to characterize the repressilator oscillator and to prototype novel three- and five-node negative feedback oscillators both in vitro and in vivo. We therefore believe the biomolecular breadboard has wide application for acting as an intermediary for biological circuit engineering.
Resumo:
Part I
Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.
Part II
The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.