159 resultados para Uncertain nonlinear systems

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents necessary and sufficient conditions to turn a linear time-invariant system with p outputs, m inputs, p greater-than-or-equal-to m and using only inputs and outputs measurements into a Strictly Positive Real (SPR).Two results are presented. In the first, the system compensation is made by two static compensators, one of which forward feeds the outputs and the second back feeds the outputs of the nominal system.The second result presents conditions for the Walcott and Zak variable structure observer-controller synthesis. In this problem, if the nominal system is given by {A,B,C}, then the compensated system is given by {A+GC,B,FC} where F and G are the constant compensation matrices. These results are useful in the control system with uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)