468 resultados para STARCH
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.
Resumo:
Thermoplastic starch/natural rubber polymer blends were prepared using directly natural latex and cornstarch. The blends were prepared in an intensive batch mixer at 150 degreesC, with natural rubber content varying from 2.5 to 20%. The blends were characterised by mechanical analysis (stress-strain) and by scanning electron microscopy. The results revealed a reduction in the modulus and in tensile strength, becoming the blends less brittle than thermoplastic starch alone. Phase separation was observed in some compositions and was dependent on rubber and on plasticiser content (glycerol). Increasing plasticiser content made possible the addition of higher amounts of rubber. The addition of rubber was, however, limited by phase separation the appearance of which depended on the glycerol content. Scanning electron microscopy showed a good dispersion of the natural rubber in the continuos phase of thermoplastic starch matrix. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
In this paper, pre-gelling starch was used to consolidate alumina-dense ceramic suspensions. The colloidal processing of the ceramic was prepared with alumina and commercial potato starch, and slips were prepared with 55 vol% of solids and 0.5 wt.% of starch. This small amount of starch was possible because of a previous pre-gelling starch treatment, resulting in more homogeneous suspensions and particles smaller than starch granules. Additionally, Sucrose was also used as a dispersion aid. After sintering, the samples were analysed according to their mechanical properties. These processes produced ceramics with a 93% relative density, 325 MPa flexural strength, and a Weibull module whose value wits m = 10, maintaining the capacity of this process to produce complex geometric shaped ceramics. (C) 2008 Elsevier Ltd. All rights reserved.
Influence of cassava starch content and sintering temperature on the alumina consolidation technique
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background. Considering the renal effects of fluid resuscitation in hemorrhaged patients, the choice of fluid has been a source of controversy. In a model of hemorrhagic shock, we studied the early hemodynamic and renal effects of fluid resuscitation with lactated Ringer's (LR), 6% hydroxyethyl starch (HES), and 7.5% hypertonic saline (HS) with or without 6% dextran-70 (HSD).Materials and methods. Forty-eight dogs were anesthetized and submitted to splenectomy. An estimated 40% blood volume was removed to maintain mean arterial pressure (MAP) at 40 mm Hg for 30 min. The dogs were divided into four groups: LR, in a 3:1 ratio to removed blood volume; HS, 6 mL kg(-1); HSD, 6 mL kg(-1); and HES in a 1:1 ratio to removed blood volume. Hemodynamics and renal function were studied during shock and 5, 60, and 120 min after fluid replacement.Results. Shock treatment increased MAP similarly in all groups. At 5 min, cardiac filling pressures and cardiac performance indexes were higher for LR and HES but, after 120 min, there were no differences among groups. Renal blood flow and glomerular filtration rate (GFR) were higher in LR at 60 min but GFR returned to baseline values in all groups at 120 min. Diuresis was higher for LR at 5 min and for LR and HES at 60 min. There were no differences among groups in renal variables 120 min after treatment.Conclusions. Despite the immediate differences in hemodynamic responses, the low-volume resuscitation fluids, HS and HSD, are equally effective to LR and HES in restoring renal performance 120 min after hemorrhagic shock treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)