157 resultados para Nonlinear system
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In previous publications, the concepts of dressed coordinates and dressed states have been introduced in the context of a harmonic oscillator linearly coupled to an infinity set of other harmonic oscillators. In this paper, we show how to generalize such dressed coordinates and. states to a nonlinear version of the mentioned system. Also, we clarify some misunderstandings about the concept of dressed coordinates. Indeed, now we: prefer to call them renormalized coordinates to emphasize the analogy with the renormalized fields in quantum field theory.
Resumo:
This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.
Resumo:
This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment that behaves as a hardening Duffing oscillator. A system which behaves in this way could be a shaker (linear system) driving a nonlinear isolator. The mass of the nonlinear system is taken to be much less than that in the linear system and thus the nonlinear system has little effect on the dynamics of the linear system. Of particular interest is the situation when the linear natural frequency of the nonlinear system is less than the natural frequency of the linear system such that the frequency response curve of the nonlinear system bends to higher frequencies and thus interacts with the resonance frequency of the linear system. It is shown that for some values of the system parameters a complicated frequency response curve for the nonlinear system can occur; closed detached curves can appear as a part of the overall amplitude-frequency response. The reason why these detached curves appear is presented and approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are given.
Resumo:
This paper presents a theorem based on the hyper-rectangle defined by the closed set of the time derivatives of the membership functions of Takagi-Sugeno fuzzy systems. This result is also based on Linear Matrix Inequalities and allows the reduction of the conservatism of the stability analysis in the sense of Lyapunov. The theorem generalizes previous results available in the literature. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work a particular system is investigated consisting of a pendalum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfield effect and it will be studied here for a nonlinear system.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
The Poincaré plot for heart rate variability analysis is a technique considered geometrical and non-linear, that can be used to assess the dynamics of heart rate variability by a representation of the values of each pair of R-R intervals into a simplified phase space that describes the system's evolution. The aim of the present study was to verify if there is some correlation between SD1, SD2 and SD1/SD2 ratio and heart rate variability nonlinear indexes either in disease or healthy conditions. 114 patients with arterial coronary disease and 65 healthy subjects underwent 30. minute heart rate registration, in supine position and the analyzed indexes were as follows: SD1, SD2, SD1/SD2, Sample Entropy, Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Detrended Fluctuation Analysis, SDNN, RMSSD, LF, HF and LF/HF ratio. Correlation coefficients between SD1, SD2 and SD1/SD2 indexes and the other variables were tested by the Spearman rank correlation test and a regression analysis. We verified high correlation between SD1/SD2 index and HE and DFA (α1) in both groups, suggesting that this ratio can be used as a surrogate variable. © 2013 Elsevier B.V.