11 resultados para NANOTECHNOLOGY

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Several studies seek biological markers that give diagnostic and degree of tumor development. The aim of this study was to validate the determination of plasma DNA using nanotechnology (Nanovue™-NV) in samples of 80 patients with prostate cancer. Methods. Blood samples of 80 patients of the Urology Ambulatory of Faculdade de Medicina do ABC with prostate cancer confirmed by anatomical-pathology criteria were analyzed. DNA extraction was performed using a GFX TM kit (Amersham Pharmacia Biotech, Inc, USA) following the adapted protocol. Plasma was subjected to centrifugation. Results: There was a big difference between the first and the second value obtained by NanoVue Only two samples had no differences between duplicates. Maximum difference between duplicates was 38 μg/mL. Average variation between 51 samples was 10.29 μg/mL, although 21 samples had differences above this average. No correlation was observed between pDNA obtained by traditional spectrophotometry and by nanotechnology. Conclusion: Determination of plasma DNA by nanotechnology was not reproducible. © 2013 Moreno et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nano-structured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology- based drug delivery systems and herbal medicines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dendrimers of poly (amidoamine) (PAMAM) are nanoparticles which have proven succeed in transporting drugs due to high solubility, low toxicity and ability to control drugs release. Studies have explored the biological potential of dendrimers such as to transport genes, development of vaccines, antiviral, antibacterial and anticancer therapies. This review of literature on the PAMAM dendrimers discusses the architecture and general construction of dendrimers and intrinsic properties of the PAMAM. This study also describes how the PAMAM interact with many drugs and the potential of these macromolecules as well as drug nanocarriers in transdermal routes of administration, ocular, respiratory, oral and intravenous administration. Dendrimers promises good future prospects for the biomedicine.