13 resultados para Mosfet

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear, tunable CMOS transconductance stage is introduced. Drain voltage of the input transistor operating in triode region is settled by a regulation loop and a first-order linear relationship between g(m) and a de bias voltage is achieved. In addition to easy tuning, this technique offers circuit simplicity, wide dynamic range, high input and output impedances and low consumption. The transconductor is presented on both single-ended and fully-differential versions. A 3rd-order elliptical low-pass g(m)-C filter with a nominal roll-off frequency of 2MHz is used as one example for the many applications of the proposed transconductor. SPICE data describe circuits performances and filter tunabilily Passband is tuned at a rate of 2.36KHz/mV and good linearity is indicated by a 0.89% THD for an 800mV(p-p) balanced-driven input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A CMOS audio-equalizer based on a parallel-array of 2nd-order bandpass-sections is presented and realized with triode transconductors. It has a programmable 12db-boost/cut on each of its three decade-bands, easily achieved through the linear dependence of gm on VDS. In accordance with a 0.8μm n-well double-metal fabrication process, a range of simulations supports theoretical analysis and circuit performance at different boost/cut scenarios. For VDD=3.3V, fullboosting stand-by prover consumption is 1.05mW. THD=-42.61dB@1Vpp and may be improved by balanced structures. Thermal- and I/f-noise spectral densities are 3.2μV/Hz12 and 18.2μV/Hz12@20Hz, respectively, for a dynamic range of 52.3dB@1Vpp. The equalizer effective area is 2.4mm2. The drawback of the existing transmission-zero due to the feedthrough-capacitance of a triode input-device is also addressed. The proposed topology can be extended to the design of more complex graphic-equalizers and hearing-aids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-voltage, low-power four-quadrant analog multiplier with optimized current-efficiency is presented. Its core corresponds to a pseudodifferential cascode, gain-boosting triode-transconductor. According to a low-voltage 1.2μm CMOS n-well process, operand differential-amplitudes are 1.0Vpp and 0.32Vpp for a 1.3V-supply. Common-mode voltages are properly chosen to maximize current-efficiency to 58%. Total quiescent dissipation is 260μW. A range of PSPICE simulation supports theoretical analysis. Excellent linearity is observed on dc characteristic. Assuming a ±0.5% mismatch on (W/L) and VTH THD at full-scale is 0.93% and 1.42%, for output frequencies of 1MHz and 10MHz, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A CMOS low-voltage, wide-swing continuous-time current amplifier is presented. Exhibiting an open-loop architecture, the circuit is composed of transresistance and transconductance stages built upon triode-operating transistors. In addition to an extended dynamic range, the current gain can be programmed within good accuracy by a rapport involving only transistor geometries and tuning biases. Low temperature-drift on gain setting is then expected.In accordance with a 0.35 mum n-well CMOS fabrication process and a single 1.1 V-supply, a balanced current-amplifier is designed for a programmable gain-range of 6 - 34 dB and optimized with respect to dynamic range. Simulated results from PSPICE and Bsim3v3 models indicate, for a 100 muA(pp)-output current, a THD of 0.96 and 1.87% at 1 KHz and 100 KHz, respectively. Input noise is 120 pArootHz @ 10 Hz, with S/N = 63.2 dB @ 1%-THD. At maximum gain, total quiescent consumption is 334 muW. Measurements from a prototyped amplifier reveal a gain-interval of 4.8-33.1 dB and a maximum current swing of 120 muA(pp). The current-amplifier bandwidth is above 1 MHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trade-off between settling time and micropower consumption in MOS regulated cascode current sources as building parts in high-accuracy, current-switching D/A converters is analyzed. The regulation-loop frequency characteristic is obtained and difficulties to impose a dominant-pole condition to the resulting 2nd-order system are discussed. Raising pole frequencies while meeting consumption requirements is basically limited by parasitic capacitances. An alternative is found by imposing a twin-pole system in which design constraints are somewhat relaxed and settling slightly faster. Relationships between pole frequencies, transistor geometry and bias are established. Simulated waveforms obtained with PSpice of designed circuits following a voltage perturbation suggest a good agreement with theory. The proposed approach applied to the design of a micropower current-mode D/A converter improves its simulated settling performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An active leakage-injection scheme (ALIS) for low-voltage (LV) high-density (HD) SRAMs is presented. By means of a feedback loop comprising a servo-amplifier and a common-drain MOSFET, a current matching the respective bit-line leakage is injected onto the line during precharge and sensing, preventing the respective capacitances from erroneous discharges. The technique is able to handle leakages up to hundreds of μA at high operating temperatures. Since no additional timing is required, read-out operations are performed at no speed penalty. A simplified 256×1bit array was designed in accordance with a 0.35 CMOS process and 1.2V-supply. A range of PSPICE simulation attests the efficacy of ALIS. With an extra power consumption of 242 μW, a 200 μA-leakage @125°C, corresponding to 13.6 times the cell current, is compensated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quasi-sinusoidal linearly tunable OTA-C VCO built with triode-region transconductors is presented. Oscillation upon power-on is ensured by RHP poles associated with gate-drain capacitances of OTA input devices. Since the OTA nonlinearity stabilizes the amplitude, the oscillation frequency f0 is first-order independent of VDD, making the VCO adequate to mixed-mode designs. A range of simulations attests the theoretical analysis. As part of a DPLL, the VCO was prototyped on a 0.8μm CMOS process, occupying an area of 0.15mm2. Nominal f0 is 1MHz, with K VCo=8.4KHz/mV. Measured sensitivity to VDD is below 2.17, while phase noise is -86dBc at 100-KHz offset. The feasibility of the VCO for higher frequencies is verified by a redesign based on a 0.35μm CMOS process and VDD=3.3V, with a linear frequency-span of l3.2MHz - 61.5MHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silicon-based gate-controlled lateral bipolar junction transistor (BJT) is a controllable four-terminal photodetector with very high responsivity at low-light intensities. It is a hybrid device composed of a MOSFET, a lateral BJT, and a vertical BJT. Using sufficient gate bias to operate the MOS transistor in inversion mode, the photodetector allows for increasing the photocurrent gain by 106 at low light intensities when the base-emitter voltage is smaller than 0.4 V, and BJT is off. Two operation modes, with constant voltage bias between gate and emitter/source terminals and between gate and base/body terminals, allow for tuning the photoresponse from sublinear to slightly above linear, satisfying the application requirements for wide dynamic range, high-contrast, or linear imaging. MOSFETs from a standard 0.18-μm triple-well complementary-metal oxide semiconductor technology with a width to length ratio of 8 μm /2 μm and a total area of ∼ 500μm2 are used. When using this area, the responsivities are 16-20 kA/W. © 2001-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A circuit for transducer linearizer tasks have been designed and built using discrete components and it implements by: a Radial Basis Function Network (RBFN) with three basis functions. The application in a linearized thermistor showed that the network has good approximation capabilities. The circuit advantages is the amplitude, width and center.