12 resultados para Linear Codes
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
Resumo:
In this paper, we introduced new construction techniques of BCH, alternant, Goppa, Srivastava codes through the semigroup ring B[X; 1 3Z0] instead of the polynomial ring B[X; Z0], where B is a finite commutative ring with identity, and for these constructions we improve the several results of [1]. After this, we present a decoding principle for BCH, alternant and Goppa codes which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight t ≤ r/2, i.e., whose minimum Hamming distance is r + 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we generalize the concept of geometrically uniform codes, formerly employed in Euclidean spaces, to hyperbolic spaces. We also show a characterization of generalized coset codes through the concept of G-linear codes.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.
Resumo:
Cognitive radio is a growing zone in wireless communication which offers an opening in complete utilization of incompetently used frequency spectrum: deprived of crafting interference for the primary (authorized) user, the secondary user is indorsed to use the frequency band. Though, scheming a model with the least interference produced by the secondary user for primary user is a perplexing job. In this study we proposed a transmission model based on error correcting codes dealing with a countable number of pairs of primary and secondary users. However, we obtain an effective utilization of spectrum by the transmission of the pairs of primary and secondary users' data through the linear codes with different given lengths. Due to the techniques of error correcting codes we developed a number of schemes regarding an appropriate bandwidth distribution in cognitive radio.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.