36 resultados para Invariants
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simple procedure to obtain complete, closed expressions for Lie algebra invariants is presented. The invariants are ultimately polynomials in the group parameters. The construction of finite group elements requires the use of projectors, whose coefficients are invariant polynomials. The detailed general forms of these projectors are given. Closed expressions for finite Lorentz transformations, both homogeneous and inhomogeneous, as well as for Galilei transformations, are found as examples.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.
Resumo:
Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general N-Higgs-doublet model potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A statistical law for the multiplicities of the SU(3) irreps (lambda, mu) in the reduction of totally symmetric irreducible representations {m} of U(N), N = (eta + 1) (eta + 2)/2 with eta being the three-dimensional oscillator major shell quantum number, is derived in terms of the quadratic and cubic invariants of SU(3), by determining the first three terms of an asymptotic expansion for the multiplicities. To this end, the bivariate Edgeworth expansion known in statistics is used. Simple formulae, in terms of m and eta, for all the parameters in the expansion are derived. Numerical tests with large m and eta = 4, 5 and 6 show good agreement with the statistical formula for the SU(3) multiplicities.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
Este estudo visou analisar as pesquisas em Modelagem Matemática na área da Educação Matemática no Brasil, investigando os trabalhos que adotam esse enfoque, publicados nos anais do 3º. Seminário Internacional de Pesquisa em Educação Matemática, em 2007. A postura assumida é a fenomenológica, e as interpretações são pautadas no movimento hermenêutico, que aponta para uma metacompreensão do tema. Os núcleos de ideias emergem dos invariantes articulados no processo de efetuar convergências, como, por exemplo, a pesquisa que se centra prioritariamente nos modos pelos quais o professor trabalha tópicos de conteúdos matemáticos com o recurso da modelagem. Esse invariante elucidativo pode indicar fragilidades quando os pesquisadores permanecem apenas no como fazer; pode também indicar possibilidades de compreender concepções e sua conversão em práticas desenvolvidas em sala de aula.
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.
Resumo:
New Linear Matrix Inequalities (LMI) conditions are proposed for the following problem, called Strictly Positive Real (SPR) synthesis: given a linear time-invariant plant, find a constant output feedback matrix Ko and a constant output tandem matrix F for the controlled system to be SPR. It is assumed that the plant has the number of outputs greater than the number of inputs. Some sufficient conditions for the solution of the problem are presented and compared. These results can be directly applied in the LMI-based design of Variable Structure Control (VSC) of uncertain plants. ©2008 IEEE.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map germs from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. We give a complete description, in terms of the weights and degrees, of the invariants that are associated to all stable singularities which appear in the discriminant of such map germs. The first class of invariants which we study are the isolated singularities, called 0-stable singularities because they are the 0-dimensional singularities. First, we give a formula to compute the number of An points which appear in any stable deformation of a quasi homogeneous co-rank one map germ from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. To get such a formula, we apply the Hilbert's syzygy theorem to determine the graded free resolution given by the syzygy modules of the associated iterated Jacobian ideal. Then we show how to obtain the other 0-stable singularities, these isolated singularities are formed by multiple points and here we use the relation among them and the Fitting ideals of the discriminant. For n = 2, there exists only the germ of double points set and for n = 3 there are the triple points, named points A1,1,1 and the normal crossing between a germ of a cuspidal edge and a germ of a plane, named A2,1. For n = 3, there appear also the one-dimensional singularities, which are of two types: germs of cuspidal edges or germs of double points curves. For these singularities, we show how to compute the polar multiplicities and also the local Euler obstruction at the origin in terms of the weights and degrees. © 2013 Pushpa Publishing House.
Resumo:
A rescale of the phase space for a family of two-dimensional, nonlinear Hamiltonian mappings was made by using the location of the first invariant Kolmogorov-Arnold-Moser (KAM) curve. Average properties of the phase space are shown to be scaling invariant and with different scaling times. Specific values of the control parameters are used to recover the Kepler map and the mapping that describes a particle in a wave packet for the relativistic motion. The phase space observed shows a large chaotic sea surrounding periodic islands and limited by a set of invariant KAM curves whose position of the first of them depends on the control parameters. The transition from local to global chaos is used to estimate the position of the first invariant KAM curve, leading us to confirm that the chaotic sea is scaling invariant. The different scaling times are shown to be dependent on the initial conditions. The universality classes for the Kepler map and mappings with diverging angles in the limit of vanishing action are defined. © 2013 Published by Elsevier Inc. All rights reserved.