A statistical law for multiplicities of SU(3) irreps (lambda, mu) in the plethysm {eta} circle times(3) {m} -> (lambda, mu)
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
10/04/2009
|
Resumo |
A statistical law for the multiplicities of the SU(3) irreps (lambda, mu) in the reduction of totally symmetric irreducible representations {m} of U(N), N = (eta + 1) (eta + 2)/2 with eta being the three-dimensional oscillator major shell quantum number, is derived in terms of the quadratic and cubic invariants of SU(3), by determining the first three terms of an asymptotic expansion for the multiplicities. To this end, the bivariate Edgeworth expansion known in statistics is used. Simple formulae, in terms of m and eta, for all the parameters in the expansion are derived. Numerical tests with large m and eta = 4, 5 and 6 show good agreement with the statistical formula for the SU(3) multiplicities. |
Formato |
20 |
Identificador |
http://dx.doi.org/10.1088/1751-8113/42/14/145201 Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 14, p. 20, 2009. 1751-8113 http://hdl.handle.net/11449/24153 10.1088/1751-8113/42/14/145201 WOS:000264292300004 |
Idioma(s) |
eng |
Publicador |
Iop Publishing Ltd |
Relação |
Journal of Physics A: Mathematical and Theoretical |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |