A statistical law for multiplicities of SU(3) irreps (lambda, mu) in the plethysm {eta} circle times(3) {m} -> (lambda, mu)


Autoria(s): Kota, V. K. B.; Mayya, K. B. K.; Alcaras, J. A. Castilho
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

10/04/2009

Resumo

A statistical law for the multiplicities of the SU(3) irreps (lambda, mu) in the reduction of totally symmetric irreducible representations {m} of U(N), N = (eta + 1) (eta + 2)/2 with eta being the three-dimensional oscillator major shell quantum number, is derived in terms of the quadratic and cubic invariants of SU(3), by determining the first three terms of an asymptotic expansion for the multiplicities. To this end, the bivariate Edgeworth expansion known in statistics is used. Simple formulae, in terms of m and eta, for all the parameters in the expansion are derived. Numerical tests with large m and eta = 4, 5 and 6 show good agreement with the statistical formula for the SU(3) multiplicities.

Formato

20

Identificador

http://dx.doi.org/10.1088/1751-8113/42/14/145201

Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 14, p. 20, 2009.

1751-8113

http://hdl.handle.net/11449/24153

10.1088/1751-8113/42/14/145201

WOS:000264292300004

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Journal of Physics A: Mathematical and Theoretical

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article