15 resultados para Infinite horizon problems
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents and discusses necessary conditions of optimality for infinite horizon dynamic optimization problems with inequality state constraints and set inclusion constraints at both endpoints of the trajectory. The cost functional depends on the state variable at the final time, and the dynamics are given by a differential inclusion. Moreover, the optimization is carried out over asymptotically convergent state trajectories. The novelty of the proposed optimality conditions for this class of problems is that the boundary condition of the adjoint variable is given as a weak directional inclusion at infinity. This improves on the currently available necessary conditions of optimality for infinite horizon problems. © 2011 IEEE.
Resumo:
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with the stability of discrete-time linear systems subject to random jumps in the parameters, described by an underlying finite-state Markov chain. In the model studied, a stopping time τ Δ is associated with the occurrence of a crucial failure after which the system is brought to a halt for maintenance. The usual stochastic stability concepts and associated results are not indicated, since they are tailored to pure infinite horizon problems. Using the concept named stochastic τ-stability, equivalent conditions to ensure the stochastic stability of the system until the occurrence of τ Δ is obtained. In addition, an intermediary and mixed case for which τ represents the minimum between the occurrence of a fix number N of failures and the occurrence of a crucial failure τ Δ is also considered. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided in this setting that are auxiliary to the main result.
Resumo:
We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.
Resumo:
An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.
Resumo:
Equations of state for the early universe including realistic interactions between constituents are formulated. Under certain hypotheses, these equations are able to generate an inflationary regime prior to the period of the nucleosynthesis. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of a curvature parameter. equal to 0 or + 1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion. All the results are valid only for a matter-antimatter symmetric universe.
Resumo:
In this Letter, an optimal control strategy that directs the chaotic motion of the Rossler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
A gas of non-interacting particles diffuses in a lattice of pulsating scatterers. In the finite-horizon case with bounded distance between collisions and strongly chaotic dynamics, the velocity growth (Fermi acceleration) is well described by a master equation, leading to an asymptotic universal non-Maxwellian velocity distribution scaling as v∼t. The infinite-horizon case has intermittent dynamics which enhances the acceleration, leading to v∼t ln t and a non-universal distribution. © Copyright EPLA, 2013.
Resumo:
Pós-graduação em Física - IFT
Resumo:
This paper investigates properties of integer programming models for a class of production planning problems. The models are developed within a decision support system to advise a sales team of the products on which to focus their efforts in gaining new orders in the short term. The products generally require processing on several manufacturing cells and involve precedence relationships. The cells are already (partially) committed with products for stock and to satisfy existing orders and therefore only the residual capacities of each cell in each time period of the planning horizon are considered. The determination of production recommendations to the sales team that make use of residual capacities is a nontrivial optimization problem. Solving such models is computationally demanding and techniques for speeding up solution times are highly desirable. An integer programming model is developed and various preprocessing techniques are investigated and evaluated. In addition, a number of cutting plane approaches have been applied. The performance of these approaches which are both general and application specific is examined.
Resumo:
We consider parameter dependent semilinear evolution problems for which, at the limit value of the parameter, the problem is finite dimensional. We introduce an abstract functional analytic framework that applies to many problems in the existing literature for which the study of asymptotic dynamics can be reduced to finite dimensions via the invariant manifolds technique. Some practical models are considered to show wide applicability of the theory. © 2013 Society for Industrial and Applied Mathematics.
Resumo:
This paper proposes a Fuzzy Goal Programming model (FGP) for a real aggregate production-planning problem. To do so, an application was made in a Brazilian Sugar and Ethanol Milling Company. The FGP Model depicts the comprehensive production process of sugar, ethanol, molasses and derivatives, and considers the uncertainties involved in ethanol and sugar production. Decision-makings, related to the agricultural and logistics phases, were considered on a weekly-basis planning horizon to include the whole harvesting season and the periods between harvests. The research has provided interesting results about decisions in the agricultural stages of cutting, loading and transportation to sugarcane suppliers and, especially, in milling decisions, whose choice of production process includes storage and logistics distribution. (C)2014 Elsevier B.V. All rights reserved.