79 resultados para INTRACELLULAR PEPTIDES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on proapoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.
Resumo:
Paracoccidioides brasiliensis is a dimorphic fungus known to produce invasive systemic disease in humans. The 43-kDa glycoprotein of P, brasiliensis is the major diagnostic antigen of paracoccidioidomycosis and may act as a virulence factor, since it is a receptor for laminin. Very little is known about early interact-ions between this fungus and the host cells, so we developed in vitro a model system employing cultured mammalian cells (Vero cells), in order to investigate the factors and virulence mechanisms of P. brasiliensis related to the adhesion and invasion process. We found that there is a permanent interaction after 30 min of contact between the fungus and the cells. The yeasts multiply in the cells for between 5 and 24 h. Different strains of P, brasiliensis were compared, and strain 18 thigh virulence) was the most strongly adherent, followed by strain 113 (virulent), 265 (considered of low virulence) and 113M(mutant obtained by ultraviolet radiation, deficient in gp43). P. brasiliensis adhered to the epithelial cells by a narrow tube, while depressions were noticed in the cell surface, suggesting an active cavitation process. An inhibition assay was performed and it was verified that anti-gp43 serum and a pool of sera from individuals with paracoccidioidomycosis were able to inhibit the adhesion of P. brasiliensis to the Vero cells. Glycoprotein 43 (gp43) antiserum abolished 85 % of the binding activity of P. brasiliensis. This fungus can also invade the Vero cells, and intraepithelial parasitism could be an escape mechanism in paracoccidioidomycosis. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure)
Resumo:
Two bradykinin-related peptides (Protopolybiakinin-I and Protopolybiakinin-II) were isolated from the venom of the social wasp Protopolybia exigua by RP-HPLC, and sequenced by Edman degradation method. Peptide sequences of Protopolybiakinin-I and Protopolybiakinin-II were DKNKKPIRVGGRRPPGFTR-OH and DKNKKPIWMAGFPGFTPIR-OH, respectively. Synthetic peptides with identical sequences to the bradykinin-related peptides and their biological functions were characterized. Protopolybiakinin-I caused less potent constriction of the isolated rat ileum muscles than bradykinin (BK). In addition, it caused degranulation of mast cells which was seven times more potent than BK. This peptide causes algesic effects due to the direct activation of B-2-receptors. Protopolybiakinin-II is not an agonist of rat ileum muscle and had no algesic effects. However, Protopolybiakinin-II was found to be 10 times more potent as a mast cell degranulator than BK. The amino acid sequence of Protopolybiakinin-I is the longest among the known wasp kinins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The insects of the order Hymenoptera ( bees, wasps, and ants) are classified in two groups, based on their life history: social and solitary. The venoms of the social Hymenoptera evolved to be used as defensive tools to protect the colonies of these insects from the attacks of predators. Generally they do not cause lethal effects but cause mainly inflammatory and/or immunological reactions in the victims of their stings. However, sometimes it is also possible to observe the occurrence of systemic effects like respiratory and/or kidney failure. Meanwhile, the venoms of solitary Hymenoptera evolved mainly to cause paralysis of the preys in order to permit egg laying on/within the prey's body; thus, some components of these venoms cause permanent/transient paralysis in the preys, while other components seem to act preventing infections of the food and future progenies. The peptide components of venoms from Hymenoptera are spread over the molar mass range of 1400 to 7000 da and together comprise up to 70% of the weight of freeze-dried venoms. Most of these toxins are linear polycationic amphipatic peptides with a high content of alpha-helices in their secondary structures. These peptides generally account for cell lysis, hemolysis, antibiosis, and sometimes promote the delivery of cellular activators/mediators through interaction with the G-protein receptor, and perhaps some of them are even immunogenic components. In addition to these peptides, the Hymenopteran venoms also may contain a few neurotoxins that target Na+ and/or Ca+2 channels or even the nicotinic ACh receptor. This review summarizes current knowledge of the biologically active Hymenoptera venoms.
Resumo:
The social wasp P. paulista is relatively common in southeast Brazil causing many medically important stinging incidents. The seriousness of these incidents is dependent on the amount of venom inoculated by the wasps into the victims, and the characteristic envenomation symptoms are strongly dependent on the types of peptides present in the venom. In order to identify some of these naturally occurring peptides available in very low amounts, an analytical protocol was developed that uses a combination of reversed-phase and normal-phase high-performance liquid chromatography (HPLC) of wasp venom for peptide purification, with matrix-assisted laser desorption/ionization time-of-flight post-source decay mass spectrometry (MALDI-Tof-PSD-MS) and low-energy collision-induced dissociation (CID) in a quadrupole time-of-flight tandem mass spectrometry (QTof-MS/MS) instrument for peptide sequencing at the sub-picomole level. The distinction between Leu and Ile was achieved both by observing d-type fragment ions obtained under CID conditions and by comparison of retention times of the natural peptides and their synthetic counterparts (with different combinations of I and/or L at N- and C-terminal positions). To distinguish the isobaric residues K and Q, acetylation of peptides was followed by Q-Tof-MS analysis. The primary sequences obtained were INWLKLGKMVIDAL-NH2 (MW 1611.98Da) and IDWLKLGKMVMDVL-NH2 (MW 1658.98Da). Micro-scale bioassay protocols characterized both peptides as presenting potent hemolytic action, mast cell degranulation, and chemotaxis of poly-morphonucleated leukocyte (PMNL) cells. The primary sequences and the bioassay results suggest that these toxins constitute members of a new sub-class of mastoparan toxins, directly involved in the occurrence of inflammatory processes after wasp stinging. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The venom of the Neotropical social wasp Protopolybia exigua(Saussure) was fractionated by RP-HPLC resulting in the elution of 20 fractions. The homogeneity of the preparations were checked out by using ESI-MS analysis and the fractions 15, 17 and 19 (eluted at the most hydrophobic conditions) were enough pure to be sequenced by Edman degradation chemistry, resulting in the following sequences:Protopolybia MPI I-N-W-L-K-L-G-K-K-V-S-A-I-L-NH2 Protopolybia-MP II I-N-W-K-A-I-I-E-A-A-K-Q-A-L-NH2 Protopolybia-MP III I-N-W-L-K-L-G-K-A-V-I-D-A-L-NH2All the peptides were manually synthesized on-solid phase and functionally characterized. Protopolybia-MP I is a hemolytic mastoparan, probably acting on mast cells by assembling in plasma membrane, resulting in pore formation; meanwhile, the peptides Protopolybia-MP II and -MP III were characterized as a non-hemolytic mast cell degranulator toxins, which apparently act by virtue of their binding to G-protein receptor, activating the mast cell degranulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have examined the applicability of the 'nested' collision induced dissociation/post-source decay (CID/PSD) method to the sequencing of novel peptides from solitary wasps which have neurotoxic venom for paralyzing other insects. The CID/PSD spectrum of a ladder peptide derived from an exopeptidase digest was compared with that of the intact peptide. The mass peaks observed only in the CID/PSD spectrum of a ladder peptide were extracted as C-terminal fragment ions. Assignment of C-terminal fragment ions enabled calculation of N-terminal fragment masses, leading to differentiation between N-terminal fragment ions and internal fragment ions. This methodology allowed rapid and sensitive identification by removing ambiguity in the assignment of the fragment ions, and proved useful for sequencing unknown peptides, in particular those available as natural products with a limited supply. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Four antimicrobial peptides were purified from Royal Jelly of honeybees, by using reverse phase-HPLC and sequenced by using Q-Tof-MS/MS: PFKLSLHL-NH2 (Jelleine-I), TPFKLSLHL-NH2 (Jelleine-II), EPFKLSLHL-NH2 (Jelleine-III), and TPFKLSLH-NH2 (Jelleine-IV). The peptides were synthesized on-solid phase, purified and submitted to different biological assays: antimicrobial activity, mast cell degranulating activity and hemolysis. The Jelleines-I-III presented exclusively antimicrobial activities against yeast, Gram+ and Gram- bacteria; meanwhile, Jelleine-IV was not active in none of the assays performed. These peptides do not present any similarity with the other antimicrobial peptides from the honeybees; they are produced constitutively by the workers and secreted into Royal Jelly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The venom of the neotropical social wasp Agelaia pallipes pallipes was fractionated by RP-HPLC resulting in the elution of seven fractions; the last two were re-fractionated under RP-HPLC by using isocratic elution conditions and the purity of the fractions were confirmed by using ESI-MS analysis. Both fractions are constituted of peptide components, which were sequenced by Edman degradation chemistry, resulting in the following sequences:Protonectin I-L-G-T-I-L-G-L-L-K-G-L-NH2Agelaia-MP I-N-W-L-K-L-G-K-A-I-I-D-A-L-NH2Both peptides are manually synthesized on solid-phase and functionally characterized by using Wistar rats cells. Protonectin is a non-hemolytic chemotactic peptide for polymorphonucleated leukocytes (PMNL), presenting some mast cell degranulating activity and potent antimicrobial action both against Gram-positive and Gram-negative bacteria. Agelaia-MP was characterized as a hemolytic mast cell degranulator toxin, presenting a poor antimicrobial action and no chemotaxis for PMNL. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)