117 resultados para Hair shaft DNA extraction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The analysis of mitochondrial DNA (mtDNA) is a useful tool in forensic cases when sample contents too little or degraded nuclear DNA to genotype by autosomal short tandem repeat (STR) loci, but it is especially useful when the only forensic evidence is a hair shaft. Several authors have related differences in mtDNA from different tissues within the same individual, with high frequency of heteroplasmic variants in hair, as also in some other tissues. Is still a matter of debate how the differences influence the interpretation forensic protocols. One difference between two samples supposed to be originated from the same individual are related to an inconclusive result, but depending on the tissue and the position of the difference it should have a different interpretation, based on mutation-rate heterogeneity of mtDNA. In order to investigate it differences in the mtDNA control region from hair hafts and blood in our population, sequences from the hypervariable regions 1 and 2 (HV1 and HV2) from 100 Brazilian unrelated individuals were compared. The frequency of point heteroplasmy observed in hair was 10.5% by sequencing. Our study confirms the results related by other authors that concluded that small differences within tissues should be interpreted with caution especially when analyzing hair samples. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho visou a comparação de cinco métodos diferentes de extração de DNA de materiais de arquivo (tecidos incluídos em parafina, esfregaços de sangue periférico - corados e não corados com Leishman, lâminas com mielogramas, gotas de sangue em Guthrie Card) e de fontes escassas (células bucais, um e três bulbos capilares e 2 mL de urina), para que fossem avaliadas a facilidade de aplicação e a facilidade de amplificação deste DNA pela técnica da reação de polimerização em cadeia (PCR). Os métodos incluíram digestão por proteinase K, seguida ou não por purificação com fenol/clorofórmio; Chelex 100® (BioRad); Insta Gene® (BioRad) e fervura em água estéril. O DNA obtido foi testado para amplificação de três fragmentos gênicos: Brain-derived neutrophic factor (764 pb), Factor V Leiden (220 pb) e Abelson (106 pb). de acordo com o comprimento do fragmento gênico estudado, da fonte potencial de DNA e do método de extração utilizado, os resultados caracterizaram o melhor caminho para padronização de procedimentos técnicos a serem incluídos no manual de Procedimentos Operacionais Padrão do Laboratório de Biologia Molecular do Hemocentro - HC - Unesp - Botucatu.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: to verify the viability of early diagnosis of fetal gender in maternal plasma by the real-time polymerase chain reaction (real-time PCR) starting at the 5th week of pregnancy. Methods: peripheral blood was collected from pregnant women with single fetus starting at the 5th week of gestation. After centrifugation, 0.4 mL plasma was separated for fetal DNA extraction. The DNA was analyzed in duplicate by real-time PCR for two genomic regions, one of the Y chromosome and the other common to both sexes, through the TaqMan® method, which uses a pair of primers and a fluorescent probe. Patients who aborted were excluded. Results: a total of 79 determinations of fetal DNA in maternal plasma were performed in 52 pregnant women. The results of the determinations were compared to fetal gender after delivery. Accuracy according to gestational age was 92.6% (25 of 27 cases) at 5 weeks with 87% sensitivity, and 95.6% (22 of 23 cases) at 6 weeks with 92% sensitivity. Starting at the 7th week of pregnancy, accuracy was 100% (29 of 29 cases). Specificity was 100% regardless of gestational age. Conclusion: real-time PCR for the detection of fetal gender in maternal plasma starting at the 5th week of gestation has good sensitivity and excellent specificity. There was agreement of the results in 100% of the cases in which male gender was diagnosed, regardless of gestational age, and from the 7th week of gestation for female gender diagnosis.
Resumo:
SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.
Resumo:
Background: Several studies seek biological markers that give diagnostic and degree of tumor development. The aim of this study was to validate the determination of plasma DNA using nanotechnology (Nanovue™-NV) in samples of 80 patients with prostate cancer. Methods. Blood samples of 80 patients of the Urology Ambulatory of Faculdade de Medicina do ABC with prostate cancer confirmed by anatomical-pathology criteria were analyzed. DNA extraction was performed using a GFX TM kit (Amersham Pharmacia Biotech, Inc, USA) following the adapted protocol. Plasma was subjected to centrifugation. Results: There was a big difference between the first and the second value obtained by NanoVue Only two samples had no differences between duplicates. Maximum difference between duplicates was 38 μg/mL. Average variation between 51 samples was 10.29 μg/mL, although 21 samples had differences above this average. No correlation was observed between pDNA obtained by traditional spectrophotometry and by nanotechnology. Conclusion: Determination of plasma DNA by nanotechnology was not reproducible. © 2013 Moreno et al; licensee BioMed Central Ltd.