6 resultados para Equivariant Nielsen theory

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use singularity theory to classify forced symmetry-breaking bifurcation problems f(z, λ, μ) = f1 (z, λ) + μf2(z, λ, μ) = 0, where f1 is double-struck O sign (2)-equivariant and f2 is double-struck D sign n-equivariant with the orthogonal group actions on z ∈ ℝ2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.