82 resultados para Enzymatic hydrolysates

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effects of treatments with the enzymes pepsin and trypsin on the in vitro immunological reactivity of the major globulins found in the seeds of sweet lupin, chickpea, and lentil. Polyclonal major globulin-specific antiserum was obtained by immunization of rabbits with a solution of the 11 S globulin of each legume. The globulins were hydrolyzed with pepsin and trypsin for 1, 5, 15, and 30 min. The native globulins and their hydrolysates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting to identify the polypeptide bands with antigenic activity, and the hypoantigenicity of the hydrolysates was analyzed by enzyme-linked immunosorbent assay. Our results show that enzymatic treatment of the major storage protein (11 S globulin) of sweet lupin, chickpea, and lentil with pepsin or trypsin lead to the formation of large amounts of short peptides and free amino acids that do not allow antibody binding, resulting in a weakened immunoreactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botryosphaeran, a new exopolysaccharide from the endophytic fungus Botryosphaeria rhodina MAMB-05, and algal laminarin were hydrolyzed by partially-fractionated enzymes of the beta-glucanolytic complex from Trichoderma harzianum Rifai. beta-Glucanase fractions (F-I and F-II) separated by gel permeation chromatography presented different modes of attack on botryosphaeran and laminarin. Botryosphaeran was hydrolyzed to the extent of 66% (F-I) and 98% (F-II) within 30 min, and its main hydrolysis products were gluco-oligosaccharides of DP >= 4, with lesser amounts of glucose, di- and tri-saccharides. The action of enzyme fractions I and II on laminarin resulted in 15% conversion to glucose, while the percentage of saccharification was radically different (70% for F-I and 25% for F-II). The different product arrays within the polysaccharide hydrolysates can be explained by the difference in the enzymes' specificities within each enzyme fraction, and the molecular structures of the polysaccharides and their complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)