100 resultados para Encapsulated
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Liposomes of soya phosphatidylcholine, cholesterol, and stearylamine (molar ratio 6/3/1) and 0.1% alpha-tocopherol were prepared by the extrusion of multilamellar vesicles through 0.2-mu m polycarbonate membrane. Liposomes were characterized by electron transmission microscopy, and the mean structure diameter was 278 nm. The encapsulation efficiency obtained was 12.73%. The topical anti-inflammatory effect was evaluated in vivo by the cotton pellet granuloma method. We analyzed free piroxicam at 4 mg/kg, piroxicam encapsulated in liposomes added to 1.5% hydroxyethylcellulose (HEC) gel at 1.6 mg/kg, and piroxicam encapsulated in liposomes added to HEC gel at 4 mg/kg; the inhibition of inflammation obtained was 21.1%, 32.8%, and 47.4%, respectively. These results showed that the encapsulation of piroxicam produced an increase of topical anti-inflammatory effect, suggesting that the inhibition of inflammation can be obtained with lower drug concentrations.
Resumo:
NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol-gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600 degrees C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5-42.5 nm while the thickness of SiO2 shell attained 1.5-3.5 nm approximately.
Resumo:
In this work the effect of the encapsulation of diclofenac sodium within liposomes on the reduction of the myotoxicity after intramuscular administration in rats was studied. Diclofenac sodium was encapsulated in small unilamellar liposomes obtained from phosphatidylcholine, cholesterol, and a-tocopherol (40:10:0.04 mM), and administered by intramuscular injection in the quadriceps femoral muscle of male Wistar rats. After a single dose of 0.2 mg diclofenac formulations the local tissue damage was assessed by plasma creatine kinase (CPK) activity and histological analysis. It was demonstrated that formulations containing free diclofenac produced a higher increase in CPK activity, while those encapsulated in liposomes exhibited CPK activity similar to the control groups. Histopathological analysis of local muscle tissue performed on the third and seventh days following the injection showed intense cellular damage when free drug solution was used, while encapsulation in liposome protected the tissue against the local tissue inflammation.
Resumo:
We have investigated some diamondoids encapsulation into single walled carbon nanotubes (with diameters ranging from1.0 up to 2.2 nm) using fully atomistic molecular dynamics simulations. Diamondoids are the smallest hydrogen-terminated nanosized diamond-like molecules. Diamondois have been investigated for a large class of applications, ranging from oil industry to pharmaceuticals. Molecular ordered phases were observed for the encapsulation of adamantane, diamantane, and dihydroxy diamantanes. Chiral ordered phases, such as; double, triple, 4- and 5-stranded helices were also observed for those diamondoids. Our results also indicate that the modification of diamondoids through chemical functionalization with hydroxyl groups can lead to an enhancement of the molecular packing inside the carbon nanotubes in comparison to non-functionalized molecules. For larger diamondoids (such as, adamantane tetramers), we have not observed long-range ordering, but only a tendency of incomplete helical structural formation. © 2012 Materials Research Society.
Resumo:
In dealing with computer networks, these allow the flow of information through the resources of various equipment's. This work describes the implementation through the encapsulation of Protocol DNP3, usually employed in Smart Grid communication, in a simulator of discrete events. The NS-2 is a simulator in open source of network events, that facilitate the development of communication networks scenarios considering the protocols involved, in wireless or wired technologies. The objective of this work is to develop the DNP3 protocol encapsulation over a TCP/IP in the in the discrete event Simulator NS-2, allowing an analysis of behavior of a middle or large network sized in Smart Grid applications. © 2013 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesivesbut, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levelswe tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via -casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations.
Resumo:
Turmeric (Curcuma longa L.), which has been used for long time as a spice, food preservative and coloring agent, is a rich source of beneficial phenolic compounds identified as curcuminoids. These phenolic compounds are known for their antioxidant, anti-inflammatory and antimutagenic properties, among others. On the other hand, they are very susceptible to oxidation, requiring protection against oxygen, light and heat. This protection can be achieved by microencapsulation. In this work, the characteristics and the stability of turmeric oleoresin encapsulated by freeze-drying using mixtures of maltodextrin and gelatin as wall materials were studied. Encapsulated turmeric oleoresin was stored at –20, 25 and 60 °C, in the absence of light, and analyzed over a period of 35 days for curcumin and total phenolic contents and color. Results showed that the samples produced with 26% maltodextrin/0.6% gelatin and 22% maltodextrin/3% gelatin presented good encapsulation efficiencies and solubility. In general, the method of encapsulation employed originated products with satisfactory thermal stability, although the encapsulated materials with a higher proportion of maltodextrin in relation to gelatin had better stabilities, especially at –20 and 25 °C temperatures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The treatment of schistosomiasis depends on a single drug: praziquantel (PZQ). However, this treatment presents limitations such as low and/or erratic bioavailability that can contribute to cases of tolerance. Improvements to the available drug are urgently needed and studies with a controlled system of drug release, like liposomes, have been gaining prominence. The present study evaluated the activity and synergy between liposomal-praziquantel (lip.PZQ) and hyperbaric oxygen therapy (HBO). Mice received doses of 60 or 100mg/kg PZQ or lip.PZQ, 50 days post-infection, and after the treatment, were exposed to HBO (3 atmosphere absolute - ATA) for 1h. The viability of adult worms and oviposition were analyzed, by necropsy and Kato-Katz examination performed after 15 days of treatment. A concentration of 100mg/kg of lip.PZQ+HBO was more effective (48.0% reduction of worms, 83.3% reduction of eggs/gram of feces) and 100% of the mice had altered of oograms (indicating interruption of oviposition) compared to other treatments and to the Control group (infected and untreated). It is known that PZQ requires participation of the host immune system to complete its antischistosomal activity and that HBO is able to stimulate the immune system. The drug became more available in the body when incorporated into liposomes and, used with HBO, the HBO worked as an adjuvant. This explains the decreases of oviposition and worms recovered form hepatic portal system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)