9 resultados para Electromechanical properties

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite made of Lead Zirconate Titranate (PZT) ceramic powder and castor oil based polyurethane (PU) were prepared in the thin film form with 0-3 connectivity by spin coating. The composite films were obtained in the thickness range of 100 mum to 300 mum using 33-vol.% of ceramic. The samples mechanical resistance. The material was characterised by dielectric spectroscopy, thermally stimulated discharge current (TSDC), hysteresis measurements and laser-intensity-modulation method (LIMM). The pyroelectric coefficient at 343 K was 7x10(-5) C.m(-2) K-1 for the sample poled with 10 MV/m at 373 K for Ih. The results show that this new composite can be used as suitable piezo and pyroelectric sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoresponse Force Microscopy (PFM) is used to characterize the nanoscale electromechanical properties of centrosymmetric CaCu3Ti4O12 ceramics with giant dielectric constant. Clear PFM contrast both in vertical (out-of-plane) and lateral (in-plane) modes is observed on the ceramic surface with varying magnitude and polarization direction depending on the grain crystalline orientation. Lateral signal changes its sign upon 180 degrees rotation of the sample thus ruling out spurious electrostatic contribution and confirming piezoelectric nature of the effect. Piezoresponse could be locally reversed by suitable electrical bias (local poling) and induced polarization was quite stable showing long-time relaxation (similar to 3 hrs). The electromechanical contrast in unpoled ceramics is attributed to the surface flexoelectric effect (strain gradient induced polarization) while piezoresponse hysteresis and ferroelectric-like behavior are discussed in terms of structural instabilities due to Ti off-center displacements and structural defects in this material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623767]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaBi4Ti4O15 (CBTi144) thin films were evaluated for use as lead-free thin-film piezoelectrics in microelectromechanical systems. The films were grown by the polymeric precursor method on (100)Pt/Ti/SiO2/Si substrates. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. The P-r and E-c were 14 mu C/cm(2) and 64 kV/cm, respectively, for a maximum applied field of 400 kV/cm. The domain structure was investigated by piezoresponse force microscopy. The film has a piezoelectric coefficient, d(33), equal to 60 pm/V and a current density of 0.7 mA/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth titanate (Bi4Ti3O12, BIT) films were evaluated for use as lead-free piezoelectric thin films in micro-electromechanical systems. The films were grown by the polymeric precursor method on LaNiO3/SiO2/Si (1 0 0) (LNO), RuO2/SiO2/Si (1 0 0) (RuO2) and Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes in a microwave furnace at 700 degrees C for 10 min. The domain structure was investigated by piezoresponse force microscopy (PFM). Although the converse piezoelectric coefficient, d(33), regardless of bottom electrode is around (similar to 40 pm/V), those over RuO2 and LNO exhibit better ferroelectric properties, higher remanent polarization (15 and 10 mu C/cm(2)), lower drive voltages (2.6 and 1.3 V) and are fatigue-free. The experimental results demonstrated that the combination of the polymeric precursor method assisted with a microwave furnace is a promising technique to obtain films with good qualities for applications in ferroelectric and piezoelectric devices. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth titanate (Bi4Ti3O12-BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 degrees C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. on the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.