90 resultados para Discriminants of number fields
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(Q(zeta(n))/Q), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of Q(zeta(p)r), where p is an odd prime and r is a positive integer. (C) 2002 Elsevier B.V. (USA).
Resumo:
The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(ℚ(ζn)/ℚ), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of ℚ(ζpr), where p is an odd rime and r is a positive integer. © 2002 Elsevier Science USA.
Resumo:
Let p be a prime number. A formula for the minimum absolute value of the discriminant of all Abelian extensions of Q of degree p(2) is given in terms of p.
Resumo:
We investigate the possible decay of protons in geodesic circular motion around neutral compact objects. Weak and strong decay rates and the associated emitted powers are calculated using a semiclassical approach. Our results are discussed with respect to distinct ones in the literature, which consider the decay of accelerated protons in electromagnetic fields. A number of consistency checks are presented along the paper.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.
Langevin simulation of scalar fields: Additive and multiplicative noises and lattice renormalization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Resumo:
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.