44 resultados para Cuzr Martensite
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The non-occurrence of the beta' -> (alpha+ gamma(1)) decomposition reaction in the Cu-9 wt.% Al-6 wt.% Ag alloy, on ageing between 200 and 450 degrees C, is discussed considering the influence of Ag on point defects redistribution and energy difference between martensite and the ordered parent phase. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The martensite aging kinetics in the Cu-10 wt.%Al and Cu-10 wt.%Al-10 wt.%Ag alloys was studied using microhardness measurements, classical differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and in-situ high-temperature X-ray diffractometry (XRD). The results for the Cu-10%Al alloy indicated a process dominated by the martensite ordering assisted by migration of quenched-in vacancies and followed by the consumption of the α phase. For the Cu-10%Al-10%Ag alloy the dominant process is the consumption of the α phase associated with a decrease in the ordering degree of the martensitic phase. © 2007 Springer Science+Business Media, LLC.
Resumo:
In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ensaios de tração uniaxiais foram empregados para deformar aços inoxidáveis austeníticos do tipo 304, em diferentes temperaturas abaixo da ambiente (de 77 K a 300 K). A relação entre a estabilidade da austenita e o encruamento, em função da temperatura de teste, é discutida quanto à transformação martensítica induzida por deformação e ao deslizamento de discordâncias na austenita. em curvas tensão-deformação que assumem a equação de Ludwik sigma = sigmao + képsilonn, na qual sigma é a tensão verdadeira e e a elongação plástica verdadeira, um modo conveniente para analisar o encruamento é por meio do diagrama log dsigma / dépsilon versus log épsilon. O aspecto significativo é a variação da taxa de encruamento dsigma / dépsilon com a elongação plástica verdadeira nas diferentes temperaturas. As mudanças no comportamento do encruamento motivando até três estágios de deformação são associadas a diferentes processos microestruturais. A transformação martensítica pode ser considerada como um processo de deformação que compete com o processo usual de deslizamento. A investigação desses estágios, na região plástica, produz uma referência qualitativa de como diferentes fatores, tais como o grau de deformação, temperatura e composição química da austenita, afetam a transformação austenita-martensita.
Resumo:
Thermal analysis and compression tests at room temperature have been carried out for Cu-10 wt.% Al and Cu-10 wt.% Al-10 wt.% Ag alloys samples. The results indicate that the decomposition reaction of the (beta(1)) parent phase is decreased suppressed and a martensite stabilization effect can be induced by Ag addition. The Cu-Al-Ag alloy shows some degree of shape memory capacity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The development of new shape memory alloys with high martensitic transformation temperature increases the potential for applications. The development and use of these new alloys depends on the stability of the structure during cycling at high temperatures. If it is possible to guarantee that on alloys keeps the structure during cycling, then the alloy can be used because of the shape memory properties. The aim of this work is to obtain a kinetic model of the forward and backward martensitic transformation of two Cu-Al-Ni-Mn-Ti alloys. Differential scanning calorimetry has been performed in order to establish the kinetic stability of the martensite and the beta transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The austenite decomposition in C-Mn steel containing boron was studied by continuous cooling from 1100 and 845 degreesC using the Jominy test. The results indicate that the different cooling speeds and the presence of boron refine and change the percentage of ferrite microstructure, martensite, and fine pearlite. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An investigation has been conducted to examine the morphological influence on fatigue life of low carbon steel with dual phase microstructure. The results showed that dual-phase microstructure, composed by ferrite and martensite had superior symmetrical bending fatigue strength when compared with ferrite-pearlite steel. Through those tests, evidences of different mechanisms were verified (such as ferrite cyclic hardening, slip band formation and beginning of crack nucleation and propagation). Based on the fatigue tests results, various mechanisms stages were discussed associated with different microstructure morphology. Copyright (C) 1996 Published by Elsevier B.V. Limited.
Resumo:
Samples of sintered AISI 316L stainless steel were plasma nitrided in a mixture of H-2-20% N-2, for 3 or 4 h. The treatment temperature was selected in 400-550 degreesC interval, in steps of 50 degreesC. X-ray diffraction (glancing angle geometry-GAXRD), conversion electron Mossbauer spectroscopy (CEMS), optical microscopy and Vickers microhardness were used as analytical techniques. For T greater than or equal to 500 degreesC and t = 4 h, a 40-mum layer is formed. The GAXRD results showed a transformation of the austenite gamma phase to the martensite in the sinterization process and showed as well, that the gamma' (Fe4N) phase is the predominant nitride besides small amounts of epsilon-Fe2N, gamma(N) CrN, Cr2O3 and the fcc nitrogen supersatured solid phase gamma(N). The CrN phase seems to decrease with temperature while the gamma(N) phase fraction is almost less than or equal to10%, independently on the temperature. The CEMS results indicated that while the gamma(N) fraction decreases with temperature of plasma nitriding, the gamma' fraction increases proportionally. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work the effect of Ag concentration on the thermal behavior of the Cu-10 mass% Al and Cu-11 mass% Al alloys with additions of 4, 6, 8 and 10 mass% Ag was studied using differential scanning calorimetry (DSC), in situ X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that for the Cu-10 mass% Al alloy Ag addition induce the beta'(1) phase formation and for the Cu-11 mass% Al alloy these additions increase the amount of martensite formed on quenching and decrease the stability range of this phase on heating.
Resumo:
In this work the influence of Ag additions on the thermal behavior of the Cu-11 mass% Al alloy was studied using differential scanning calorimetry, in situ X-ray diffractometry and scanning electron microscopy. The results indicated that changes in the heating rate shift the peak attributed to alpha phase formation to higher temperatures, evidencing the diffusive character of this reaction. The activation energy value for the alpha phase formation reaction, obtained from a non-isotherm kinetic model, is close to that corresponding to Cu atoms self diffusion, thus confirming that this reaction is dominated by Cu atoms diffusion through the martensite matrix.
Resumo:
In this work the (alpha + gamma(1)) complex phase formation reaction in the Cu-10mass% Al-6mass% Ag alloy was studied using Differential Scanning Calorimetry (DSC), Differential Thermodilatometry (DTD), X-ray diffractometry (XRD), Optical (OM) and Scanning Electron Microscopies (SEM). The results indicated the presence of two different processes, related to a change in the Ag diffusion route from the alpha matrix to the (alpha + gamma(1)) complex phase.
Resumo:
Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.