42 resultados para Constrained evolutionary optimization

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are completed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strut-and-tie models are widely used in certain types of structural elements in reinforced concrete and in regions with complexity of the stress state, called regions D, where the distribution of deformations in the cross section is not linear. This paper introduces a numerical technique to determine the strut-and-tie models using a variant of the classical Evolutionary Structural Optimization, which is called Smooth Evolutionary Structural Optimization. The basic idea of this technique is to identify the numerical flow of stresses generated in the structure, setting out in more technical and rational members of strut-and-tie, and to quantify their value for future structural design. This paper presents an index performance based on the evolutionary topology optimization method for automatically generating optimal strut-and-tie models in reinforced concrete structures with stress constraints. In the proposed approach, the element with the lowest Von Mises stress is calculated for element removal, while a performance index is used to monitor the evolutionary optimization process. Thus, a comparative analysis of the strut-and-tie models for beams is proposed with the presentation of examples from the literature that demonstrates the efficiency of this formulation. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving constrained nonlinear optimization problems. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An invex constrained nonsmooth optimization problem is considered, in which the presence of an abstract constraint set is possibly allowed. Necessary and sufficient conditions of optimality are provided and weak and strong duality results established. Following Geoffrion's approach an invex nonsmooth alternative theorem of Gordan type is then derived. Subsequently, some applications on multiobjective programming are then pursued. © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)