66 resultados para BINARY RESPONSE MODELS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study was carried out to elaborate response surface models using broiler performance data recovered from literature in order to predict performance and elaborate economic analyses. Nineteen studies published between 1995 and 2005 were retrieved using the systematic literature review method. Weight gain and feed conversion data were collected from eight studies that fulfilled the pre-established inclusion criteria, and a response surface model was adjusted using crude protein, environmental temperature, and age as independent variables. The models produced for weight gain (r² = 0.93) and feed conversion (r² = 0.85) were accurate, precise, and not biased. Protein levels, environmental temperature and age showed linear and quadratic effects on weight gain and feed conversion. There was no interaction between protein level and environmental temperature. Age and crude protein showed interaction for weight gain and feed conversion, whereas interaction between age and temperature was detected only for weight gain. It was possible to perform economic analyses to determine maximum profit as a function of the variables that were included in the model. It was concluded that the response surface models are effective to predict the performance of broiler chickens and allow the elaboration of economic analyses to optimize profit.
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.
Resumo:
The aim of this study was to establish methodologies for verification of the fluoride solution dose-response relationship using bovine enamel and pH-cycling models. Six models of the cariogenic challenge were performed, varying the time of demineralization and pH, time of remineralization, composition of de- and remineralization solutions, frequency and time of application of treatment solutions and pH-cycling duration. For the evaluation of the fluoride effect on caries dynamics, two proposed models provided for improvement in standardization of methods leading to a higher level of precision, demonstrating a dose response between treatments with regard to surface microhardness and Delta Z. For the evaluation of the fluoride effect on enamel remineralization, the addition of fluoride to the de- and remineralization solutions and the reduction of frequency and time of application of fluoride solutions led to a more suitable pH-cycling model. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Second-order polynomial models have been used extensively to approximate the relationship between a response variable and several continuous factors. However, sometimes polynomial models do not adequately describe the important features of the response surface. This article describes the use of fractional polynomial models. It is shown how the models can be fitted, an appropriate model selected, and inference conducted. Polynomial and fractional polynomial models are fitted to two published datasets, illustrating that sometimes the fractional polynomial can give as good a fit to the data and much more plausible behavior between the design points than the polynomial model. © 2005 American Statistical Association and the International Biometric Society.
Resumo:
Background: The aim of this study is to characterize and evaluate the host response caused by three different models of experimental periodontitis in mice.Methods: C57BL/6 wild-type female mice were distributed into six experimental groups and sacrificed at 7, 15, and 30 days after the induction of periodontal disease: 1) group C: no treatment control group; 2) group L: periodontal disease induced by ligature; 3) group G-Pg: oral gavage with Porphyromonas gingivalis (Pg); 4) group G-PgFn: oral gavage with Fusobacterium nucleatum + Pg; 5) group I-Pg: heat-killed Pg injected into the palatal mucosa between the molars; and 6) group I-V: phosphatebuffered saline injected into the palatal mucosa. The samples were used to analyze the immune-inflammatory process in the gingival tissue via descriptive histologic and real-time polymerase chain reaction analyses. The alveolar bone loss was evaluated using microcomputed tomography. The data were analyzed using the Kruskal-Wallis test, followed by a post hoc Dunn test and analysis of variance, followed by a Tukey test using a 5% significance level.Results: Only the ligature model displayed significant alveolar bone loss in the initial period (7 days), which was maintained with time. The group injected with heat-killed Pg displayed significant alveolar bone loss starting from day 15, which continued to progress with time (P < 0.05). A significant increase (P < 0.05) in the gene expression of proinflammatory cytokines (interleukin-6 and -1b) and proteins involved in osteoclastogenesis (receptor activator of nuclear factor-kB ligand and osteoprotegerin) was observed in the ligature group on day 7.Conclusion: The ligature and injection of heat-killed Pg models were the most representative of periodontal disease in humans, whereas the oral gavage models were not effective at inducing the disease under the experimental conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho teve como objetivo principal avaliar a importância da inclusão dos efeitos genético materno, comum de leitegada e de ambiente permanente no modelo de estimação de componentes de variância para a característica intervalo de parto em fêmeas suínas. Foram utilizados dados que consistiam de 1.013 observações de fêmeas Dalland (C-40), registradas em dois rebanhos. As estimativas dos componentes de variância foram realizadas pelo método da máxima verossimilhança restrita livre de derivadas. Foram testados oito modelos, que continham os efeitos fixos (grupos de contemporâneo e covariáveis) e os efeitos genético aditivo direto e residual, mas variavam quanto à inclusão dos efeitos aleatórios genético materno, ambiental comum de leitegada e ambiental permanente. O teste da razão de verossimilhança (LR) indicou a não necessidade da inclusão desses efeitos no modelo. No entanto observou-se que o efeito ambiental permanente causou mudança nas estimativas de herdabilidade, que variaram de 0,00 a 0,03. Conclui-se que os valores de herdabilidade obtidos indicam que esta característica não apresentaria ganho genético como resposta à seleção. O efeito ambiental comum de leitegada e o genético materno não apresentaram influência sobre esta característica. Já o ambiental permanente, mesmo sem ter sido significativo o seu efeito pelo LR, deve ser considerado nos modelos genéticos para essa característica, pois sua presença causou mudança nas estimativas da variância genética aditiva.
Resumo:
This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.