13 resultados para Atomic processes

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rate coefficients for radiative association of silicon and sulphur atoms to form silicon monosulphide (SiS) molecule are estimated. The radiative association is due mainly to approach in the E(1)Sigma(+) and A(1)Pi states of SiS. For temperatures ranging from similar to 1000 to similar to 14 000 K, the rate coefficients are found to vary from 8.43 x 10(-17) to 2.69 x 10(-16) cm(3) s(-1). Our calculated rate coefficient is higher than the values used in modelling the chemistry of Type Ia supernovae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rate coefficients for direct radiative association of carbon and nitrogen atoms to form CN, and of carbon ions and nitrogen atoms to form CN+ ions, are calculated for temperatures in the range of 300 to 14,700 K. For the CN molecule, the rate coefficients can be represented by the standard expression, k(CN)(T) = 7.87 x 10(-19)(T/300)(0.056) exp (-96.0/T) cm(3) s(-1) for temperatures between 300 and 2700 K and k(CN)(T) = 1.37 x 10(-18)(T/300)-0.128 exp (-520.1/T) cm(-3) s(-1) at T > 2700 K. For the CN+ ion, the corresponding expression is k(CN+)(T) = 1.08 x 10(-18)(T/300)(0.071) exp (-57.5/T) cm(-3) s(-1) for the temperature range studied. Calculated rate coefficients k(CN) are about 2 orders of magnitude lower than the canonical value used in the modeling of the chemistry of various astrophysical environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rate coefficients for radiative association of SO, SO+, and S-2 are estimated. For temperatures ranging from 300 to 14,000 K, the direct radiative association rate coefficients are found to vary with temperature from 1.73 x 10(-19) to 7.29 x 10(-19) cm(3) s(-1) and from 1.49 x 10(-21) to 3.70 x 10(-19) cm(3) s(-1) for S-2 and SO, respectively. The rate coefficients for formation through the inverse predissociation for S-2 are found to vary from 3.59 x 10(-18) to 1.44 x 10(-20) cm(3) s(-1). For SO+, the direct rate coefficient varies rapidly with temperature from 3.62 x 10(-27) cm(3) s(-1) at 2000 K to 2.34 x 10(-20) cm(3) s(-1) at 14,000 K. The direct radiative association rate coefficients increase with the increase in temperature, but the inverse predissociation rate coefficients decrease with the increase in temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rate coefficients for the formation of carbon monophosphide (CP) and silicon monophosphide (SiP) by radiative association are estimated for temperatures ranging from 300 to 14 100 K. In this temperature range, the radiative association rate coefficients are found to vary from 1.14 x 10(-18) to 1.62 x 10(-18) cm(3) s(-1) and from 3.73 x 10(-20) to 7.03 x 10(-20) cm(3) s(-1) for CP and SiP, respectively. In both cases, rate coefficients increase slowly with the increase in temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of the aluminium monofluoride molecule AlF by radiative association of the Al and F atoms is estimated. The radiative association of Al(P-2) and F(P-2) atoms is found to be dominated by the approach along the A(1) potential energy curve accompanied by spontaneous emission into the X-1 Sigma(+) ground state of the AlF. For temperatures ranging from 300 to 14 000 K, the rate coefficients are found to vary from 1.35 x 10(-17) to 9.31 x 10(-16) cm(3) s(-1), respectively. These values indicate that only a small amount of AlF molecules can be formed by radiative association in the inner envelope of carbon-rich stars and other hostile environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was the development a computer code for simulation and analysis of atomic spectra from databases constructed from the literature. There were created four routines that can be useful for spectroscopic studies in the atomic processes of laser isotope separation. In the first routine, Possible Transitions, the program checks the possible electron transitions from an energy level of the atom present in the database considering the selection rules for an electric dipole transition. The second routine, Locator Transitions, checks the possible electronic transitions within a user-specified spectral region. The routine Spectra Simulator creates simulated spectra using the graphical application gnuplot through lorentzian curve and finally, the routine Electronic Temperature determines the temperature of electronic excitation of the atom, thought the Boltzmann Plot Method. To test the reliability of the program there were obtained experimental emission spectra of a hollow cathode discharge of dysprosium and argon as a buffer gas. The hollow cathode discharge has been subjected to different values of operating currents and pressure of inert gas. The spectra obtained were treated with the assistance of program routines developed (Transition Locator and Spectra Simulator) and temperatures electronic excitation of the atoms of dysprosium in the different discharge conditions were calculated (routine Electronic Temperature). The results showed that the electronic excitation temperature of the neutral dysprosium atoms in the hollow cathode discharge increases with increasing current applied to the cathode and also by increasing the gas pressure buffer. The determination coefficients, R2, obtained by the Electronic Temperature routine using the linear adjust of the Boltzmann Plot Method were greater... (Complete abstract click electronic access below)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we reexamine quantum electrodynamics of atomic electrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji formalism by considering the variation rates of physical observable. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic electrons, discussing the arbitrariness in the statistical functions in second-order bound-state perturbation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferroelectric Pb1-xCaxTiO3 (x = 0.24) thin films were formed on a Pt/Ti/SiO2/Si substrate by the polymeric precursor method using the dip-coating technique for their deposition. Characterization of the films bq X-ray diffraction showed a perovskite single phase with a tetragonal structure after annealing at 700 degreesC. Atomic force microscopy (AFM) analyses showed that the film had a smooth and crack-free surface with low surface roughness. In addition, the PCT thin film had a granular structure with an 80 nm grain size. The thickness of the films observed by the scanning electron microscopy (SEM) is 550 nm and there is a good adhesion between the film and substrate. For the electrical measurements metal-ferroelectric-metal of the type capacitors were obtained, where the thin films showed good dielectric and ferroelectric properties. The dielectric constant and dissipation factor at 1 kHz and measured at room temperature were found to be 457 and 0.03. respectively. The remanent polarization and coercive field for the: deposited films were P-r = 17 muC/cm(2) and E-c = 75 kV/cm, respectively. Moreover. The 550-nm-thick film showed a current density in the order of 10(-8) A/cm(2) at the applied voltage of 2 V. The high values of the thin film's dielectric properties are attributed to its excellent microstructural quality and the chemical homogeneity obtained by the polymeric precursor method. (C) 2001 Elsevier science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we investigate the effect from the solution concentration on aggregation in layer-by-layer (LBL) films of poly(omethoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid). Films are adsorbed on hydrophilized glass substrates and characterized with UV-Vis spectroscopy and atomic force microscopy. The formation of aggregates is favored in more concentrated solutions, leading to an increase in the diameter of the domains. This is caused by stronger polymer-polymer interactions under high concentrations. The size of POMA aggregates in solution is estimated to be larger than in LBL films, which is surprising because one should expect aggregates from solution to coalesce into larger aggregates in the deposited films. This unexpected result may be explained by a swelling effect of aggregates in the aqueous POMA solutions, consistent with other reports in the literature which consider the aggregates in solution to be made up of smaller aggregates. Upon adsorption on a solid substrate to form the LBL film, a molecular reorganization probably takes place, resulting in smaller aggregates. It is also found that the size distribution of the POMA domains in the LBL films is determined by the concentration of the solution. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conditions for the existence of autosolitons were considered in trapped Bose-Einstein condensates with attractive atomic interactions. The expression for the parameters of the autosoliton was derived using the time-dependent variational approach for the nonconservative 3-dimensional Gross-pitaevskii equation and their stability was checked. The results were in agreement with the exact numerical calculations. It was shown that the transition from unstable to stable point solely depends on the magnitude of the parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-body recombination coefficient of an ultracold atomic system, together with the corresponding two-body scattering length a, allow us to predict the energy E 3 of the shallow trimer bound state, using a universal scaling function. The production of dimers in trapped Bose-Einstein condensates, from three-body recombination processes, in the regime of short magnetic pulses near a Feshbach resonance, is also studied in line with the experimental observation.